
www.manaraa.com

A b s tra c t

A pproxim ate G aussian  E lim ination

Rasmus Kyng 

2017

We show how to perform sparse approximate Gaussian elimination for undirected Laplacian 

matrices and directed Laplacian matrices. This leads to the simplest known nearly-linear 

time solvers for linear equations in these matrices. For directed Laplacians, the approach 

gives the first known nearly-linear time linear equation solver. This in turn gives nearly- 

linear time algorithms for computing many interesting properties of a random walk matrix, 

including its stable distribution.

For undirected Laplacians, this is the first solver that is based purely on random sam­

pling, and does not use any graph theoretic constructions such as low-stretch trees, sparsi- 

fiers, or expanders. The crux of our analysis is the use of matrix martingales to bound the 

error accumulation of the algorithm.

To develop and analyze the algorithm for directed Laplacians, we build on and extend 

recent developments in spectral graph theory for directed graphs, which combined with a 

matrix martingale analysis leads to a simple and fast solver. The algorithm relies on a sur­

prising routine for performing unbiased, sparse approximation of the Cholesky factorization 

on a type of matrix known as an Eulerian Laplacian.

We also show how Approximate Gaussian Elimination can be used to compute sparse 

approximations of Schur complements of Laplacians, and how this in turn leads to the first 

algorithm for sampling random spanning trees in dense and/or weighted graphs faster than 

matrix multiplication time. This is the first improvement in running time for this problem 

in dense graphs in more than 2 0  years.



www.manaraa.com



www.manaraa.com

Approxim ate Gaussian Elim ination

A D issertation 
P resented to  the  Faculty of the  G raduate  School

of
Yale University 

in C andidacy for the  Degree of 
D octor of Philosophy

by
Rasm us Kyng 

D issertation D irector: Daniel A. Spielman 

December, 2017



www.manaraa.com

ProQuest Number: 10767254

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10767254

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



www.manaraa.com

Copyright (c) 2017 by Rasmus Kyng 

All rights reserved.



www.manaraa.com

Contents

A cknow ledgm ents v

1 Introduction  1

1.1 Prior W o r k ....................................................................................................................  5

1.2 R esu lts .................................................................................................................................. 10

1.3 Bibliographic N o tes ............................................................................................................16

2 Prelim inaries 17

2 . 1  Linear A lg e b r a .................................................................................................................. 17

2.2 Matrix Classes ...................................................................................................................19

2.3 Solutions to Linear E q u a tio n s .................................................... : .................................21

2.3.1 Iterative Methods and P reconditioners..............................................21

2.3.2 Preconditioned Iterative Refinement for Positive Semi-Definite Matrices 22

2.3.3 Schur Complements  ...........................................................................23

2.3.4 Gaussian Elimination, Cholesky Factorization, and LU-decomposition 25

2.3.5 Schur Complements and C lo s u r e ................................................................ 27

2.3.6 The Clique Structure of Schur Complements....................................28

2.4 Spanning Trees of G r a p h s .................................................................................................29

2.4.1 Spanning T re e s ........................................................................................29

2.4.2 Schur Complements and Spanning T re e s ...................................................30

3 A pproxim ate G aussian Elim ination 32

3.1 The Master Cholesky Approximation A lgorithm ............................... 33



www.manaraa.com

3.1.1 Clique Sampling P r o o f s ...................................................................................... 41

3.2 Solving Laplacian Linear Systems using Approximate Gaussian Elimination . 45

3.3 Going Faster with Sparsification   . . . 46

3.4 Approximating Schur Complements using Approximate Gaussian Elimination 48

4 Sam pling R andom  Spanning Trees 51

4.1 Algorithm for Sampling Spanning T r e e s .................................................   . 53

4.1.1 Structure of the R ecursion .......................  54

5 A pproxim ate Gaussian E lim ination for D irected  Laplacians 65

5.1 Analysis of the LU Factorization A lg o r ith m ...................................................... 72

5.1.1 Finding an a-RCDD B l o c k ................................................................................72

5.1.2 Single Vertex Elimination A lg o rith m ................................................................73

5.1.3 Bounds on Schur C om plem ents.................................  77

5.1.4 Single Phase A n a ly s is ..........................................................................................81

A 93

A .l Schur Complements and Pseudo-inverses.............................................................93

A.2 Deferred Proofs from Chapter 5 ............................................................................. 94

A.2.1 Proof of Lemma 5.0.4..............................................................................................95

A.3 Lemmas about Finding RCDD S e ts ................................................................................. 98

A.4 Matrix Facts ...................... 100

Bibliography 101



www.manaraa.com

Acknowledgments

I owe a lot to a lot of people who helped me get through graduate school. First on that 

list is Dan, who was an incredible advisor. He taught me to do research, and he has always 

been extremely generous with his advice and ideas. I continue to aspire to work as he does, 

and be as helpful and kind as he is.

I would like to thank my mum and my dad, my brother and sisters, and the rest of my 

incredible family, whom I have spent too much time away from, but could always rely on.

I want to thank Anup and Sushant, who were there with me in the daily grind, and who 

helped me become a lot less confused about some things. Fortunately th a t’s all it takes. And 

I want to thank my many and very impressive coauthors, or more importantly, colleagues in 

research. Working with such good people is a joy, and working without them would hardly 

be worth it. I especially want to thank Richard, who is unfailingly generous and good to 

the many people around him. And I want to thank Peng, whose tireless work got us far.

I owe many thanks to my colleagues in the Department of Computer Science, and re­

member fondly the team behind Operation Crushing Fist. The Yale Institute for Network 

Science has been my home at Yale for a few years now, and I want to thank the many people 

who made it a delight to work there, and to thank Emily, Kim, and Nicholas, who took such 

good care of me.

I want to thank my committee for agreeing to be on it in the first place. I hope they 

will enjoy reading this thesis.

To Ada, Martin, and Ludwig, I also owe a lot: They were a delight to know and to work 

with, and they inspired me to head over here.

I have had the great fortune of meeting many wonderful people in New Haven, and made

v



www.manaraa.com

friends there who got me through many good times and bad. I cannot list them all, but 

give my thanks to the residents of HGS, the boys on Mansfield, and to Gareth and Sam, to 

Sam, Zlatko, Yehan, Andrew, Luca, Will, and Jess, and many more.

Many generations of Brits in New Haven and visitors from Cambridge have made my 

stay here much better, but Angus more than anyone—he’s been there all the way with me, 

and always there for me.

W ithout Yale Swing and Blues (and now Fusion), I would have surely gone mad, and I 

am lucky to have had so many dances and experienced so much happiness with the people 

there, especially the generations of the swing crew, Ning, Dan, Kevin, Eric, Renee, and 

Laurel.

I also want to thank Anders, Christoffer, Oluf, Kaare, and my other good friends back 

in Denmark. It is always a joy to come back to them, and I am grateful to still be a small 

part of their lives.

Finally, I have to thank Linda and Iver, my high school teachers who first got me seriously 

interested in mathematics in general, and linear algebra in particular. That has turned out 

ok so far.

vi



www.manaraa.com

For Solvej, Morten, and my wonderful siblings.



www.manaraa.com

Chapter 1

Introduction

Solving Linear Equations. Solving systems of linear equations is a fundamental algo­

rithmic problem. Gaussian Elimination, an algorithm for solving linear equations, has been 

studied since 179 CE, and possibly much earlier [Cal99].

Given a matrix A 6 Mraxn and a vector c 6 Rn, we can solve the linear system A x  =  c 

in 0 (n u) time, where u; is the matrix multiplication constant, for which the best currently 

known bound is u  < 2.3727 [Str69, W ill2 ]. Such a running time bound is cost prohibitive 

for the large sparse matrices often encountered in practice. However, for certain classes of 

matrices, we can develop much faster solvers for systems of linear equations. Two of the most 

im portant such classes are Symmetric Diagonally Dominant (SDD) and Laplacian matrices:

• A symmetric matrix M  is called Symmetric and Diagonally Dominant (SDD) if for all

•  An SDD matrix U  is a Laplacian if U ( i ,j)  < 0 for % ^  j, and for all i, ^  • U ( i ,j)  = 0. 

A Laplacian matrix is naturally associated with a graph on its vertices, where i and j  

are adjacent if U ( i,j )  ^  0.

When M  is an n  x n  SDD matrix with m non-zeros, and polynomially bounded en­

tries, the linear system M x =  c can be solved approximately to e-accuracy in 0 ((m  +  

n) log1/ 2"1-0̂  n log (l/e)) time [ST14a, CKM+ 14a]. The solvers work with Laplacian matri­

ces, but a reduction due to Gremban [Gre96], shows tha t an approximate solver for Lapla­

cians can be used to solve SDD linear systems with only constant factor overhead in the

1



www.manaraa.com

running time. The result of Spielman and Teng spurred a series of major developments in 

fast graph algorithms, sometimes referred to as “the Laplacian Paradigm” of designing graph 

algorithms [TenlO].

The asymptotically fastest known algorithms for Maximum Flow in directed unweighted 

graphs [Madl3, M adl6 ], Negative Weight Shortest Paths and Maximum weight match­

ings [CMSV17], Minimum cost flows and Lossy generalized flows [LS14, DS08a], sam­

pling spanning trees in unweighted graphs [KM09b, MST15a] all rely on fast Lapla­

cian linear system solvers. Other applications include solutions of partial differential 

equations via the finite element method [Str8 6 , BHV08], semi-supervised learning on 

graphs [ZGL03, ZS04, ZBL+04], graph partitioning [OSV12], and more [CKM+ 11, LS13, 

MST15b,KMP12,SSlla,DS08b,She09,KMll]). W ithout directly using linear system solvers, 

applications of ideas and techniques from the solver of Spielman and Teng have been useful 

a range of problems in other domains [Shel3, KLOS14, DKP+ 16, MadlO, ADK+ 16])

Only very recently were close-to-linear time linear system solvers obtained for matrix 

families beyond SDD matrices. Nearly-linear time solvers were extended to symmetric M- 

matrices [DS08a]. Beyond these, nearly linear-time solvers have been obtained for Block 

Diagonally Dominant matrices and Connection Laplacians [KLP+ 16]. Progress on spectral 

theory of directed graphs [CKP+ 16a, CKP+ 16b, CKK+17] made it possible to develop the 

first nearly-linear time solver for Row (respectively Column) Diagonally Dominant matrices, 

and Directed Laplacians, which we present in this thesis.

• A matrix M  G Rnxn is Row Diagonally Dominant if for a lii, M (i, i) >

Similarly, the matrix is Column Diagonally Dominant if for all i,

m (m ) > E j ^ | M ( i , j ) | .

• A matrix L € Rnxn is called a directed Laplacian if (1) its off diagonal entries

are non-positive, i.e. L ( i ,j)  <  0  for all i ^  j , and (2 ) it satisfies E l  =  0 , i.e.

L (M ) =  ~  E # i  0  for a11 i

Our linear equation solver for Directed Laplacians gives the first nearly-linear time algo­

rithms for computing e-approximations to various properties of random walks on directed

2



www.manaraa.com

graphs, including stationary distributions, personalized PageRank vectors, hitting times, 

and escape probabilities [CKP+ 16a].

There are essentially two main approaches to solving systems of linear equations, from 

which most other algorithms are derived (e.g. see [TBI97]). The first approach is “direct 

solvers”, of which the most basic is Gaussian Elimination Applied to a non-singular matrix 

M , Gaussian Elimination produces a factorization (LU-decomposition) M  =  C U , where C  

is a lower-triangular matrix and Li is an upper-triangular matrix. Such a factorization allows 

us to solve a system M.x = b by computing x  = M ~l b — (LI' 1 )TjC 1b. The inverse of £ , 

and Li can be applied quickly since linear systems in lower- and upper-triangular matrices 

can be easily solved in time proportional to the number of non-zero entries in the matrix by 

back- and forward-substitution. When the input matrix is positive semi-definite, Gaussian 

Elimination can be used to factor it as M  =  C C T , where C  is lower triangular. This is 

referred to as a Cholesky factorization.

The second main approach to solving systems of linear equations is iterative methods. 

Roughly speaking, iterative methods start from a trivial initial guess for the solution, and 

repeatedly improve the approximate solution by correcting for errors in the current estimate. 

Iterative methods converge quickly if the estimates of the error in the current approximate 

solution are are sufficiently accurate.

The most basic iterative method is Iterative Refinement. To solve the system Mcc — b, 

where M  is a square matrix, Iterative Refinement starts with a trivial initial guess for the 

solution, usually =  0, and then updates the solution by subtracting the residual error 

in given by Ma?W — b, i.e. £c^+1) =  — (M a;^  — ft). Iterative Refinement is only

guaranteed to convergence when M  is in some sense very similar to the identity matrix.

Both direct solvers and iterative methods have their drawbacks: Direct methods usually 

produce dense matrices, which inherently makes them slow, especially when the input matrix 

is sparse. Iterative methods require good ways to produce estimates of the error in the 

current solution, which is usually difficult when the input matrix has a large condition 

number.

The fundamental obstacle to using Gaussian Elimination to quickly solve systems of 

linear equations is that C  and Li can be dense matrices even if the original matrix M  is

3



www.manaraa.com

sparse. The reason is tha t the key step in Gaussian Elimination, eliminating a variable, say 

Xi, from a system of equations, creates a new coefficient M ^ j, k) for every pair j , k such that 

M (j, i) and M (i, k ) are non-zero. This phenomenon is called fill-in. For Laplacian systems, 

eliminating the first variable corresponds to eliminating the first vertex in the graph, and 

the fill-in corresponds to adding a clique on all the neighbors of the first vertex. Sequentially 

eliminating variables often produces a. sequence of increasingly-dense systems, resulting in 

an 0 (n 3) worst-case time even for sparse M.

The fundamental obstacle to using iterative methods to quickly solve linear equations 

is the need to produce sufficiently good estimates for the error in the current solution. For 

symmetric matrices with positive eigenvalues, the convergence rate of iterative methods 

depends on the condition number of the matrix, which generally an be extremely large. In 

the case of asymmetric matrices, for iterative methods to guarantee convergence at all, the 

matrix must usually be close to the identity matrix in a strong sense.

Iterative methods can sometimes be accelerated using a tool known as preconditioning. 

This technique involves constructing a linear operator Z that is an approximation of M  and 

has the property tha t Z-1 can be applied cheaply. Then for any approximate solution x ^ \  

the error in the solution, M -1 6 — x ^ \ can be approximated by Z- 1 (Ma;W — 5).

The central contribution of this thesis is to show tha t for several families of matrices, 

we can construct sparse and high-quality preconditioners using an approximate version of 

Gaussian elimination, essentially by randomly discarding most of the entries created by 

elimination. The preconditioner we produce is a sparse factorization Z =■ CU  tha t gives an 

excellent approximation of M, and ensures that Z-1 can be applied quickly.

Using these preconditioners in Iterative Refinement gives an extremely simple algorithm 

for solving Laplacian systems of linear equations in nearly linear time, and it lets us develop 

the first nearly-linear time algorithm for solving systems of linear equations in Directed 

Laplacians.

While this dissertation is focused on theoretical analysis of algorithms, the extremely 

simple algorithms we develop here for solving systems of linear equations suggest that the 

Laplacian paradigm may finally be reaching the stage where implementations of theoretically 

sound and asymptotically fast algorithms will change the way we solve a large range of

4



www.manaraa.com

problems in practice. One example is the Laplacians.jl GitHub repository, where Laplacian 

linear equation solvers inspired by Approximate Gaussian Elimination are actively being 

developed.

A pproxim ation o f Laplacian Schur Com plem ents. As a byproduct of our algorithm 

for approximate Gaussian Elimination, we also get a technique for efficiently computing 

sparse approximations of Schur complements of Laplacian matrices. The Schur complement 

of a square matrix onto a set of variables is the remaining matrix after all other variables 

have been eliminated using Gaussian Elimination. There are several connections between 

Schur complements and random spanning trees, which we leverage to give a faster algorithm 

for sampling random spanning trees.

Sam pling Random  Spanning Trees. Random spanning trees are one of the most well- 

studied probabilistic structures in graphs. Their history goes back to the classic matrix-tree 

theorem due to Kirchoff in 1840s that connects the spanning tree distribution to matrix 

determinants [Kir47]. The task of algorithmically sampling random spanning trees has been 

studied extensively [Gue83, Bro89, Ald90, Kul90, Wil96, CMN96, KM09a, MST15a, HX16].

Over the past decade, sampling random spanning trees have found a few surprising 

applications in theoretical computer science -  they were at the core of the breakthroughs 

in approximating the traveling salesman problem in both the symmetric [GSS1 1 ] and the 

asymmetric case [AGM+ 10]. Goyal et al. [GRV09] showed that one could construct a cut 

sparsifier by sampling random spanning trees.

We leverage connections between Laplacian matrix Schur complements and our new 

algorithm for approximating these to give the first algorithm for sampling random spanning 

trees in dense and/or weighted graphs faster than matrix multiplication time. This is the 

first improvement in running time for this problem in dense graphs in more than 2 0  years.

1.1 Prior W ork

Linear Equation Solvers for Laplacians. Though the current best algorithm for solv­

ing a general n  x n positive semidefinite linear system with m  non-zero entries takes

5



www.manaraa.com

time 0 (m in{m n,n2-2373}) [Will2], a breakthrough result by Spielman and Teng [ST04a, 

ST14b] showed tha t linear systems in graph Laplacians could be solved in time 0 (m  • 

poly (log n) log ^). There has been a lot of progress over the past decade improving their 

breakthrough result, making it faster, simpler, and more parallelizable [KMP10, KMP11, 

KOSZ13,CKM+ 14b,PS14,KLP+ 16], and the current best running time is 0 { m logs nlog | )  

(up to polylog n factors) [CKM+ 14b]. All of these algorithms have relied on graph-theoretic 

constructions -  low-stretch trees [ST04a,KMP10,KMPll,KOSZ13,CKM+ 14b], graph sparsi- 

fication [ST04a,KM P10,KM Pll,CKM +14b,PSl4], and explicit expander graphs [KLP+ 16].

In contrast, our algorithm requires no graph-theoretic construction, and is based purely 

on random sampling. Our result only uses two algebraic facts about Laplacian matrices: 

1 . They are closed under taking Schur complements, and 2. They satisfy the effective resis­

tance triangle inequality (Lemma 3.1.5).

C om paring A pproxim ate G aussian Elim ination to  Incom plete C holesky Factor­

ization. A popular approach to tackling fill-in is Incomplete Cholesky factorization, where 

we throw away most of the new entries generated when eliminating variables. The hope is 

tha t the resulting factorization is still an approximation to the original matrix L, in which 

case such an approximate factorization can be used to quickly solve systems in L. Though 

variants of this approach are used often in practice, and we have approximation guarantees 

for some families of Laplacians [Gus78,Gua97,BGH+06], there are no known guarantees for 

general Laplacians to the best of our knowledge. Most variants of incomplete Cholesky in 

the literature are deterministic algorithms. A notable exception is a randomized rounding 

scheme proposed by Clarkson [Cla03] that he experimentally showed performs well on some 

matrices.

D irected  Laplacians. For symmetric diagonally dominant matrices, which include the 

Laplacians of undirected graphs, Spielman and Teng gave an algorithm in 2004 [ST04b] to 

solve the corresponding linear systems in nearly-linear time, spurring the development of 

the “Laplacian Paradigm”.

However, while this approach has been incredibly successful for symmetric linear systems

6



www.manaraa.com

and undirected graph optimization problems, comparable results for their asymmetric or 

directed counterparts have proven quite elusive. In particular the techniques for solving 

Laplacian systems seemed to rely intrinsically on multiple properties of undirected graphs, 

and, until recently, the best algorithms in the directed case simply treated the Laplacians 

as unstructured matrices and applied general linear algebraic routines, leading to super­

quadratic running times.

Two recent papers [CKP+ 16a,CKP+ 16b] suggested tha t it may be possible to close this 

gap, potentially laying the foundation for a new class of nearly-linear-time algorithms for 

directed graphs and asymmetric linear systems. The first paper [CKP+ 16a] showed that lin­

ear systems involving several natural classes of asymmetric matrices, including Laplacians of 

directed graphs, general square column diagonally dominant matrices, and their transposes 

(called row diagonally dominant matrices), could be reduced with only polylogarithmic over­

head to solving linear systems in the Laplacians of Eulerian graphs. It then showed how 

to use these solvers, again with only polylogarithmic overhead, to compute a wide range of 

fundamental quantities associated with random walks on directed graphs, including the sta­

tionary distribution, personalized PageRank vectors, hitting times, and escape probabilities. 

The paper combined these reductions with an algorithm to solve Eulerian Laplacian systems 

in time 0 (ra3/4n +  m n2/3) to achieve faster (but still significantly super-linear) algorithms 

for all of these problems . 1

The second paper [CKP+ 16b] provided an improved solver for Eulerian systems tha t runs 

in almost-linear time 0 ( m - \-n 2 ° ^ ogn log lo g ), thus providing almost-linear-time algorithms 

for all of the problems reduced to such a solver in [CKP+ 16a].

In this dissertation, we close the algorithmic gap between the directed and undirected 

cases (up to logarithmic factors) by providing an algorithm to solve Eulerian Laplacian 

systems in time 0(m ).

1. Following the notation and terminology of the previous papers, we use O notation to suppress terms 
that are polylogarithmic in n, the natural condition number of the problem k , and the desired accuracy e. 
We use the term “nearly linear” for algorithms that run in time 0 ( m ) =  O(m) log°^(nKe), and “almost 
linear” for algorithms that run in time 0(m(nKe-1 )° ^ ) .

7



www.manaraa.com

Schur C om plem ents. Very little prior work exists on Schur complement approximation. 

One paper showed how to approximate Schur complements of onto special submatrices of 

Laplacians [KLP+ 16], but their approach to obtaining an e-approximate Schur complement 

required e- 4  scaling of the edge density in the output, as opposed to our scaling of e-2 . 

These two restrictions on subsets and density mean tha t this earlier result would not be 

useful for sampling spanning trees.

R andom  Spanning Trees. One of the first major results in the study of spanning trees 

was Kirchoff’s matrix-tree theorem, which states that the total number of spanning trees 

for general edge weighted graphs is equal to any cofactor of the associated graph Laplacian 

[Kir47].

Much of the earlier algorithmic study of random spanning trees heavily utilized these 

determinant calculations by taking a random integer between 1 and the total number of trees, 

then efficiently mapping the integer to a unique tree. This general technique was originally 

used in [Gue83, Kul90] to give an 0 (m n 3)-time algorithm, and ultimately was improved to 

an 0 (n w)-time algorithm by [CMN96]., where m ,n  are the numbers of edges and vertices 

in the graph, respectively, and oj «  2.373 is the matrix multiplication exponent [W ill2]. 

These determinant-based algorithms have the advantage that they can handle edge-weighted 

graphs, where the weight of a tree is defined as the product of its edge weights. 2 Despite 

further improvements for unweighted graphs, no algorithm prior to our work improved upon 

this 0 (n w) runtime in the general weighted case in over 20 years since this work. Even for 

unweighted graphs, nothing faster than 0 (nw) was known for dense graphs with m  > n 1-78.

We now give a brief overview of the improvements for unweighted graphs along with a 

recent alternative 0 (n u ) algorithm for weighted graphs.

Around the same time as the 0 (n w )-time algorithm was discovered, Broder and Aldous 

independently showed that spanning trees could be randomly generated with random walks, 

where each time a new vertex is visited, the edge used to reach that vertex is added to the

tree [Bro89,Ald90]. Accordingly, this results in an algorithm for generating random spanning

2. To see why this definition is natural, note that this corresponds precisely to thinking of an edge with 
weight k as representing k parallel edges and then associating all spanning trees that differ only in which 
parallel edges they use.



www.manaraa.com

trees tha t runs in the amount of time proportional to the time it takes for a random walk 

to cover the graph. For unweighted graphs this cover time is O(ran) which in expectation 

is better than 0 {n u ) in sufficiently sparse graphs and worse in dense ones. However, in the 

more general case of edge-weighted graphs, the cover time can be exponential in the number 

of bits used to describe the weights. Thus, this algorithm does not yield any improvement in 

worst-case runtime for weighted graphs. Wilson [Wil96] gave an algorithm for generating a 

random spanning tree in expected time proportional to the mean hitting time in the graph. 

This time is always upper bounded by the cover time, and it can be smaller. As with cover 

time, in weighted graphs the mean hitting time can be exponential in the number of bits 

used to describe the weights, and so this algorithm also does not yield an improvement in 

worst-case runtime for weighted graphs.

Kelner and Madry improved upon this result by showing how to simulate this random 

walk more efficiently. They observed tha t one does not need to simulate the portions of the 

walk that only visit previously visited vertices. Then, they use a low diameter decomposition 

of the graph to partition the graph into components that are covered quickly by the random 

walk and do precomputation to avoid explicitly simulating the random walk on each of 

these components after each is initially covered. This is done by calculating the probability 

tha t a random walk entering a component at each particular vertex exits on each particular 

vertex, which can be determined by solving Laplacian linear systems. This approach yields 

an expected runtime of 0(m-y/n) for unweighted graphs [KM09a].

This was subsequently improved for sufficiently sparse graphs with an algorithm that also 

uses shortcutting procedures to obtain an expected runtime of 0 (ra4/3) in unweighted graphs 

[MST15a]. Their algorithm uses a new partition scheme based on effective resistance and 

additional shortcutting done by recursively finding trees on smaller graphs that correspond 

to random forests in the original graph, allowing the contraction and deletion of many edges.

Recently, Harvey and Xu [HX16] gave a simpler deterministic 0 (n u ) time algorithm that 

uses conditional effective resistances to decide whether each edge is in the tree, contracting 

the edge in the graph if the edge will be in the tree and deleting the edge from the graph if 

the edge will no t . 3  Updating the effective resistance of each edge is done quickly by using

3. Note that for any edge e, there is a bijection between spanning trees of the graph in which e is contracted

9



www.manaraa.com

recursive techniques similar to those in [CDN89] via an extension of the Sherman-Morrison 

formula.

1.2 R esu lts

A pproxim ate G aussian E lim ination for Laplacians. Informally, the algorithm for 

generating the LU-decomposition of a Laplacian using Gaussian Elimination can be ex­

pressed as follows:

for i =  1 to n  — 1 do
Use equation i to express the variable for vertex i in terms of the remaining

variables.

Eliminate vertex i, adding a clique on the neighbors of i. 

end

Our algorithm for generating a sparse LU-decomposition using approximate Gaussian 

Elimination can informally be expressed as follows (see the routine M a s t e r C h o lA p x , 

Algorithm 1 , in Section 3.1 for a precise description):

Randomly permute the vertices.

for i = 1 to n  — 1 do
Use equation i to express the variable for vertex i in terms of the remaining

variables.

Eliminate vertex i, adding random samples from the clique on the neighbors of i. 

end

We prove the following theorem about our algorithm, where for symmetric matrices 

A, B, we write A  B if eeB  — A  and eeA  — B  are both positive semidefinite (PSD).

Theorem  1.2.1 (Approximate Cholesky Factorization for Laplacians). Suppose U  (E M.nXn 

is a Laplacian matrix with m  non-zero entries. Given a scalar 6 < 1 /n 100, the algorithm 

C h o lA p x (U,<5) returns an approximate Cholesky factorization C s.t. with probability at

and spanning trees of the original graph that contain e. Similarly, there is a bijection between spanning 
trees of the graph in which e is deleted and spanning trees of the original graph that do not contain e.

10



www.manaraa.com

least 1  — 0(5),

CCT «1/2 u.

The maximum number of non-zero entries in C  and the total running time are both bounded 

by 0 (m  log2 (1/6) log n).

As an immediate consequence of using the sparse approximate Cholesky factorization 

combined with Iterative Refinement we get a nearly linear time Laplacian solver.

C oro lla ry  1 .2 . 2  (Laplacian Linear Equation Solver). Suppose G = (V, E) is a con­

nected undirected multi-graph with positive edge weights w : E  — R+,  and associated 

Laplacian U , and that G has m  multi-edges. Given a scalar 5 < l / n 100; the algorithm 

C h o l A p x S o l v e r ( U ,  e, 5, b ) returns x  s.t. with probability at least 1 — 0(6),

\\x — U + 6 ||u  <  e ||U + 6 ||u . (1.1)

The running time is bounded by 0 (m  log2( l / £ )  l o g n l o g ( l / e ) ) .

The proof of Theorem 1.2.1 is short, fitting in less than ten pages. This is in stark 

contrast to the original result of Spielman and Teng [ST14a], which was eventually split 

into three paper spanning about a hundred pages. This is in large part because improved 

random matrix theory lets us do away with most of the original algorithmic machinery of 

their result. The simplified algorithm in turn helps generalize the result beyond Laplacians.

A crucial element of the proof of Theorem 1.2.1 is the use of matrix martingales. Taking 

an unusual, additive perspective on the process of Gaussian Elimination allows us to analyze 

a sequence of interleaved eliminations and sampling, unlike previous work which dealt with 

these procedures separately. This additive view also lets us show that our algorithm in 

fact computes an unbiased estimator of the LU-decomposition of the input matrix. The 

interleaving of eliminations and sampling creates dependencies between random variables 

being analyzed, and to handle these dependencies, we use matrix martingales, in particular 

Tropp’s Matrix Freedman’s theorem [Trolla]. Other key ingredients of the proof include 

the use of a randomized order of elimination, which helps us control the variance of the

11



www.manaraa.com

process, and our approach to control of leverage scores of samples. In previous solvers, 

leverage score estimates are obtained using fairly involved procedures (e.g. low-stretch trees, 

ultrasparsifiers, or the subsampling procedure due to Cohen et al. [CLM+ 15]). In contrast, 

our solver starts with the crudest possible estimates of 1 for every edge, and then uses the 

triangle inequality for effective resistances (Lemma 3.1.5) to obtain estimates for the new 

edges generated. We show tha t these estimates suffice for constructing a nearly linear time 

Laplacian solver.

A pproxim ate Gaussian Elim ination for D irected  Laplacians. We develop the first 

nearly-linear time solver for linear systems in Directed Laplacians. The core of our algo­

rithm is the use of approximate Gaussian elimination to compute a sparse approximate 

LU-decomposition of Eulerian Laplacians -  a subclass of Directed Laplacians where the as­

sociated graph has weighted in-degree equal to out-degree at every vertex. We combine this 

with a reduction from the general case of solving linear equations in Directed Laplacians to 

systems in Eulerian Laplacians, developed in [CKP+ 16a].

Our algorithm for approximate LU-decomposition of an Eulerian Laplacian is 

E u l e r i a n L U , and its performance is described by the theorem below.

Theorem  1.2.3 (Approximate LU-decomposition for Eulerian Laplacians). Given an Eu­

lerian Laplacian L E Rnxn with m  nonzero entries and any e E (0,1/2), and <5 < 

1/n, in 0 {m  +  ne~8 lo g ^ ^ ^ l/J ) )  time, with probability at least 1  — 0(6) the algorithm 

E u l e r i a n L U ( L ,  5 ,  e), produces lower and upper triangular matrices C  E R nxn and U  E 

E "xn such that for some symmetric PSD matrix F  ~ poiy(n) (L +  LT)/2 , (C U )JT?\CU) y  

l /0 ( lo g 2 n) • F , ||F t/2(L — C U )F^ 2\\2 <  e and max[nnz(£),nnz(W)] <  n l o g ^ ^ l / ^ )  • e-6 .

Using the approximate LU-decomposition as a preconditioner inside Iterative Refinement 

(see Lemma 5.0.6 4), we then obtain a linear equation solver for Eulerian Laplacians.

Corollary 1.2.4 (Nearly-Linear Time Solver for Eulerian Laplacians). Given an Eule­

rian Laplacian L E Rnxn and a vector b E Kn with 6  _L I ,  and e E (0,1/2), in

4. For historical reasons, this lemma refers to the routine as Preconditioned Richardson, although it is 
more accurately understood as Iterative Refinement

12



www.manaraa.com

0 (m \o g ° ^  n log (l/e )) time we can w.h.p. compute an e-approximate solution x to Lee = b 

in the sense that \\x — Loftily < e I T 6 I k  where U l  =  (L +  Lt )/2.

Combining this result with reductions proved in [CKP+ 16a], we immediately obtain 

nearly-linear running times (i.e., linear up to polylogarithmic factors in n, m, and a natural 

condition number-like quantity) for all of the following problems:

• solving row diagonally dominant (or column diagonally dominant) linear systems in­

cluding arbitrary (non-Eulerian) directed Laplacian systems

• computing the stationary distribution of a Markov chain

• personalized PageRank

• obtaining polynomially good estimates of the mixing time of a Markov chain

• computing the hitting time from one vertex to another

• computing escape probabilities for any triple of vertices

• computing all-pairs commute times5

The core of the algorithm E u l e r i a n L U  is a novel routine for unbiased, sparse approxi­

mation of Gaussian Elimination on Eulerian Laplacians. The routine preserves the null space 

of the approximate LU-decomposition, which essentially requires maintaining all vertex de­

grees exactly. A priori the existence of a unbiased, sparse, efficiently computable estimator 

tha t always maintains the correct nullspace exactly is rather surprising. The sampling we 

use to approximate the elimination process requires slightly more samples than in the case of 

undirected Laplacians. This means the matrix slowly grows dense and occasionally we need 

to sparsify all of the remaining matrix. Here “sparsify” means producing an approximate 

version of the matrix tha t is sparser than the input. We sparsify the matrix by making 

black-box use of the routine developed for this in [CKP+ 16a]. An informal sketch of the

5. If one wishes to compute commute times for a number of pairs greater than the number of edges in the 
graph, the runtime will be nearly-linear in the output size instead of the number of edges.

13



www.manaraa.com

algorithm is stated below:

Randomly permute the vertices.

for i — 1 to n  — 1 do
Use equation i to express the variable for vertex i in terms of the remaining

variables.

Eliminate vertex i, adding random samples from the clique on the neighbors of i. 

if  The remaining matrix is too dense then  

Sparsify the matrix, 

end  

end

To prove Theorem 1.2.3, we also need several other components. Measured using a 

natural notion of ordering of positive semi-definite matrices, Schur complements of undi­

rected Laplacians are always smaller than the original matrix. This is very important for 

bounding the variance of the approximate Gaussian Elimination routine in the proof of The­

orem 1 .2 .1 . An analogous fact is not true for Eulerian Laplacians: Some Schur complements 

grow very large compared to the original matrix. To control the variance of the elimina­

tion process regardless, we carefully choose the sets we eliminate, and show that for. these 

special sets, the Schur complements are not growing too quickly. A technical contribution, 

but which may be of independent interest, is that we measure the approximation quality of 

the LU-decomposition w.r.t. a norm that is generated on the fly and depends on random 

choices made by the algorithm. We then show that Iterative Refinement using our LU- 

decomposition as a preconditioner will will converge measured in this execution-dependent 

norm -  and eventually demonstrate tha t the final output is close in the usually preferred 

norm.

A pproxim ation o f Laplacian Schur C om plem ents and Sam pling. If we perform a 

partial LU-decomposition of an n x n matrix M, eliminating only a subset of the variables 

F  C  [n], the remaining matrix on the remaining subset of the variables C = [n] \  F  is 

referred to as the Schur complement of M onto C, which we denote by Sc[M]c . The Schur 

complement is introduced in Section 2.3.3. It can be shown that Sc[M]c does not depend

14



www.manaraa.com

on the order in which the variables in F  are eliminated.

Theorem  1.2.5 (Approximation of Laplacian Schur Complements). Suppose U  E KnXn 

is a Laplacian matrix with m  non-zero entries. Given a set vertices C C V , and scalars 

0 <  e <  1/2, 0 <  5 <  1, the algorithm S c h u r A p x (L, C, e, 5) returns a Laplacian matrix 

S. With probability > 1 — 0(5), the following statements all hold: S « e ScfU]^. S is 

a Laplacian matrix whose edges are supported on C. Let k =  \C\ = n — \F\. The total 

number of non-zero entries S is 0 (ke~ 2 log(n/£)). The total running time is bounded by 

0 ( ( m logn log2 (n/5) +  ne~2 lognlog 4 (n / 6 )) polyloglog(n)).

The proof of Theorem 1.2.5 relies on combining techniques used to prove Theorem 1 .2 . 1  

with more stages of sparsification to ensure the output is sufficiently sparse, as well as 

combining both additive an multiplicative views of partial LU-decompositions to show that 

in fact spectral approximation between LU-decompositions of PSD matrices implies spectral 

approximation of their respective Schur complements.

Sam pling R andom  Spanning Trees. In an unweighted graph, a uniformly random 

spanning tree is simply a spanning tree of the graph chosen uniformly among all its spanning 

trees. In a weighted undirected graph, the natural generalization of this distribution is to 

sample a tree with a probability that is proportional to the product of the weights of the 

edges in the tree. Restricted to integer weights, we can think of weights as counting multi­

edges and letting each choice of multi-edge give rise to a distinct spanning tree. Given an 

undirected, weighted graph G(V, E, w), we study the algorithmic task of sampling a random 

spanning tree from this distribution.

Schur complements of Laplacian matrices are closely related to the problem of sampling 

random spanning trees from undirected graphs. Schur complements can be used to measure 

the probability of an edge appearing in a random spanning tree. For example, in an un­

weighted graph, if an edge exists between vertices i and j , then Sc[U]^ ̂  is the Laplacian of 

a single edge with some weight w, and 1 fw  is the marginal probability that edge i, j  appears 

in a random spanning tree of the graph.

We leverage this connection and the above result on Schur complement approximation to 

give the fastest known algorithm for sampling random trees in dense and weighted graphs.

15



www.manaraa.com

We give an algorithm for this problem, that, for a given 5 > 0, outputs a random spanning 

tree from this distribution with probability 1 — 5 in expected time 0 ( n 5 / 3 m 1 / 3 log4  (1/5)).

T h eo re m  1.2.6 (Sampling Random Spanning Trees). For any 0 < 5 < 1, the rou­

tine G e n e r a t e S p a n n in g T r.e e  (Algorithm 5) outputs a random spanning tree from  

the w-uniform distribution with probability at least 1 — 5 and takes expected time 

0 (m ax In 4/3?™1/2, n 2} log4 (1/5)).

Beyond our tools for approximating Schur complements, the proof of Theorem 1.2.6 also 

requires a few other interesting ideas. The starting point for our algorithm is the 0 (n w) 

algorithm of Harvey and Xu [HX16] which has the same running time as the algorithm 

of Colburn et al. [CMN96], but is much simpler. The bottle-neck of this algorithm is the 

computation of Schur complements of Laplacians, and so we are able to accelerate it using 

Theorem 1.2.5. However, the algorithm requires us to sample a sequence of edges using 

probabilities calculated based on Schur complements. Introducing small errors in these 

probabilities could quickly make the sampling process diverge from the desired distribu­

tion. Instead, we use a powerful trick to sample from the exact distribution, by adaptively 

computing higher accuracy estimates of the probabilities when necessary.

1.3 B ibliographic N otes

The material presented in Chapter 3 is based on the paper [KS16] co-authored with Sushant 

Sachdeva, except for the section on Schur complement approximation, which is based 

on [DKP+16], co-authored with David Durfee, John Peebles, Anup B. Rao, and Sushant 

Sachdeva. The same paper is the source of the material in Chapter 4. The material in 

Chapter 5 is based on the still unpublished paper [CKK+ 17], co-authored with Michael B. 

Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup Rao, and Aaron Sidford.

16



www.manaraa.com

Chapter 2

Preliminaries

In this chapter, we review a number of central concepts tha t will be useful to reader of later 

on.

2.1 Linear A lgebra

All of this dissertation concerns questions in theoretical computer science that draw heavily 

on linear algebra. Below we introduce some basic notation and definitions that will be used 

in later chapters.

U pper and Lower Triangular M atrices. We say a square matrix U. is upper triangular 

if it has non-zero entries 7  ̂ 0 only for i < j  (i.e. above the diagonal). Similarly,

we say a square matrix C  is lower triangular if it has non-zero entries 7  ̂ 0

only for i > j  (i.e. below the diagonal). Often, we will work with matrices that 

are not upper or lower triangular, but which for we know a permutation matrix P  

s.t. P U P T is upper (respectively lower) triangular. For computational purposes, this 

is essentially equivalent to having a upper or lower triangular matrix, and we will 

refer to such matrices as upper (or lower) triangular. The algorithms we develop for 

factorization will always compute the necessary permutation.

M oore-Penrose Pseudo-inverse. We use Bt to denote the Moore-Penrose pseudo-inverse 

of a matrix B.

17



www.manaraa.com

P ositive D efin ite M atrices and P ositive Sem i-D efinite M atrices. We say a square 

matrix M  G MnXn is positive definite if for all x  G R71 where x ^  0, we have ccTMcc >

0. If for all x  G Rn where x ^  0, we have ccTMcc > 0, then M  is positive semi-definite 

(PSD).

Loewner Order. We use -< to denote a partial order on symmetric matrices, where A ■< B 

if and only B — A is PSD.

R estriction. Given an m  x n matrix B, and index sets F  C [m], C  C [n], we use ( B ) ^  t°  

denote the \F\ x \C\ matrix obtained by restricting B to the rows F  and the columns 

C. When it does not cause ambiguity, we will sometimes omit the brackets and write 

& fc  to denote the matrix (B)pc-.

Projection  M atrix Given matrix B G Rmxn, let E1b ==f B (B B T)tB T, i.e. the orthogonal 

projection onto the image of B.Note that n B =  n  I  and n B =  n | .

N orm s from Quadratic Forms. For any PSD matrix M  and any vector v, define the 

semi-norm ||v ||M ^  V vTM v.

K ernel and Cokernel. Given a matrix M , we use ker(M) to denote the kernel of M , i.e. 

the subspace of vectors x  s.t. Mcc =  0. The term cokernel refers to the kernel of M T.

U ndirectification (A rithm etic Sym m etrization) Given square matrix A, define 

U A a +2a  ... \Ye refer to U a  as the undirectification (or the arithmetic symmetriza­

tion) of A.

Let 1 G Kn denote the all ones vector, with dimension n  that will always be made clear in

the context of its use. Similarly, we let 0 denote the all zero vector or matrix, depending on

context.

The following fact is useful, since we often need to apply the pseodo-inverse of a matrix.

Fact 2.1.1 (Pseudo-inverse of a product). Suppose M  =  A B C  is square real matrix, where

18



www.manaraa.com

A and C are non-singular. Then

M f -  n M C - ^ A - ^ M T .

D efin ition  2 .1 . 2  (PSD Spectral Approximation). Given two PSD matrices A  and B  and 

a scalar e > 0, we say A  « e B i f  and only if

exp(—e)A ^ B  r< exp(e)A.

We say A  is an e-approximation o /B .

D efin ition  2.1.3 (Asymmetric Spectral Approximation). Consider two square asymmetric 

matrices A  and B, s.t. A  has kernel equal to its co-kernel and the undirectification U a  of 

A  is PSD. Given a scalar e >  0, we say B is an e-asymmetric spectral approximation of A  

if  and only if

( U t  ^ ( A - b W  ) i / 2 < e.

2.2 M atrix  C lasses

In this section, we introduce several families of matrices. Each is significant, because we are 

able to construct fast linear system solvers for matrices in these classes.

S y m m etric  D iagonally  D o m in an t (SD D ) M atrices . A matrix M  £ RnXn is said to 

be Symmetric Diagonally Dominant (SDD), if it is symmetric and for each row i,

m m > E im(«)I- (21)

It can be shown that every SDD matrix is positive semi-definite. .

U n d ire c te d  L ap lacians, a .k .a . L ap lacians. We consider a connected undirected multi­

graph G =  (V, E), with positive edges weights w : E  —»• M+. Let n =  \V\ and m =  \E\. We 

label vertices 1 through n, s.t. V  =  ( 1 , . . . ,  n}. Let Xi denote the ith standard basis vector.

19



www.manaraa.com

Given an ordered pair of vertices (u, v), we define the pair-vector bU)V £ Rn as bUjV = X v~ X u- 

For a multi-edge e, with endpoints u ,v  (arbitrarily ordered), we define be — bU;V.

By assigning an arbitrary direction to each multi-edge of G we define the Laplacian of G 

as U  =  Y^eeE w (e)beb J . Note tha t the Laplacian does not depend on the choice of direction 

for each edge. Given a single multi-edge e, we refer to w(e)beb j  as the Laplacian of e.

A weighted multi-graph G is not uniquely defined by its Laplacian, since the Laplacian 

only depends on the sum of the weights of the multi-edges on each edge. We want to 

establish a one-to-one correspondence between a weighted multi-graph G and its Laplacian 

U, so from now on, we will consider every Laplacian to be maintained explicitly as a sum 

of Laplacians of multi-edges, and we will maintain this multi-edge decomposition as part of 

our algorithms.

Fact 2.2.1. I f  G is connected, then the kernel of the corresponding Laplacian U  is the span 

of the vector 1.

D irected  Laplacians. A matrix L £ Mnxn is called a directed Laplacian if (1) its off 

diagonal entries are non-positive, i.e. L(i, j )  < 0 for all i ^  j ,  and (2) it satisfies 1TL =  0,

i.e. L(i, i) = — L C?> 0  for a11 i -

A ssociated  Graph. To every directed Laplacian L £ Mnxn we associate a graph 

Gx =  (V ,E ,w ) with vertices V  = [n], and edges (i , j)  of weight w( i , j ) =  — L(jf, i), for 

all i 7  ̂ j  £  [n] with L(j, i) ^  0. Occasionally we write L =  D — A T to denote that we 

decompose L into the diagonal matrix D  (where D (i, i) =  L(i, i) is the out degree of vertex 

i in Gx) and non-negative matrix A (which is weighted adjacency matrix of Gl , with 

A( i , j )  = w( i , j ) if {i, j) £ E , and A (i , j )  = 0  otherwise).

Eulerian Laplacian. A matrix L is called an Eulerian Laplacian if it is a directed 

Laplacian with LI =  0. Note tha t L is an Eulerian Laplacian if and only if its associated 

graph is Eulerian.

Below w,e introduce a special notion of well-behaved subsets of vertices of a Directed

20



www.manaraa.com

Laplacian: a-Row and Column Diagonally Dominant sets (abbreviated a-RCDD). By elim­

inating vertices from these sets, we are able to reduce the .

D efin ition  2.2.2 (a-RCDD). Given a subset F  of the vertices of (the graph of) a Di­

rected Laplacian L, we say a vertex i £ F  is a-RCDD if — I+al^nl and

\Ljil — The set F  is a-RCDD i f  every vertex in the set is a-RCDD.

2.3 Solutions to  Linear E quations

When approximately solving a linear system of equations Ma? =  6 , say, over the reals, it is 

im portant to pick a useful notion of approximation.

For Laplacian solvers, the approximation error of an approximate solution x  to a system 

Ua? =  b is measured by the e s.t.

||£  -  XT+6 1 1^  <  e HXT+fcllu-

In most applications, this is a directly useful notion of approximation. Fortunately, the 

log(l/e) running time dependence of on the approximation parameter e also means that 

approximations in many other norms can be guaranteed by solving to high accuracy in the 

norm stated above and then proving some weak relationship between different notions of 

error.

For Eulerian Laplacians, we use a similar notion of error for the system La? =  6 ,

x  — jJb < 6 L %
UL UL

where U l =  (L + L T)/2. For an Eulerian Laplacian L, the matrix U l is always an undirected 

Laplacian.

2 .3 .1  I te r a tiv e  M e th o d s  an d  P re co n d itio n ers

In this dissertation, we study algorithms for obtaining approximate, but highly accurate, 

solutions to systems of linear equations in a given matrix. A central framework when 

developing such algorithms is iterative methods. The convergence rate of most iterative

21



www.manaraa.com

methods inherently depends on the condition number of the matrix in which a linear system 

is being solved.

A wide range of iterative algorithms exist, from the very simplest, known as method 

Iterative Refinement and its close cousin, Richardson Iteration, to Chebyshev Iteration and 

Conjugate Gradient Descent, significantly more complex methods tha t achieve better de­

pendence on the condition number.

While most iterative methods have been designed to solve systems of linear equations 

in positive semi-definite matrices, Iterative Refinement can also be shown to converge, for 

other matrices, provided the input matrix is close to the identity matrix in a strong sense.

A key tool in iterative methods is preconditioners. Given a linear equation A x  = b in a 

square matrix A, a preconditioner for A  is a matrix that in some sense approximates A, but 

is easier to invert. In iterative methods, if we can compute a preconditioner for the matrix, 

we usually replace the condition number dependence in the running time of the iterative 

method with a dependence on the approximation quality between A  and the preconditioner, 

at the cost of having to apply the inverse of the preconditioner.

Throughout this dissertation, the only iterative method we will use is Iterative Refine­

ment. To use Iterative Refinement to build fast algorithms for solving linear equations, we 

will need to construct extremely high quality preconditioners. This approach has the advan­

tage of extending beyond the setting of positive semi-definite and even symmetric matrices, 

which will be crucial in Chapter 5, where we construct nearly-linear time solvers for linear 

systems in Directed Laplacians, a class of matrices which is neither positive semi-definite 

nor symmetric.

2 .3 .2  P r e c o n d itio n e d  I te r a tiv e  R efin em en t for P o s it iv e  S em i-D efin ite  M a­

tr ic e s

We briefly introduce Preconditioned Iterative Refinement [Hig02, Chapter 12] to solve the 

system A x  = b, where A G CnXn and b G Cn . Suppose Z is a preconditioner for A. 

Preconditioned Iterative Refinement refers to the procedure which computes the iterates 

below.

=  0 , cc^+1) =  x ^  — z J ( A x ^  — b),

22



www.manaraa.com

We use P r e c o n I t e r R e f i n e m e n t (U ,  Z, e, b) to denote the routine which performs 

preconditioned iteration refinement as described above, to compute and return x ^ \  with 

t = 31ogi.

T h eo rem  2.3.1. Consider a positive semi-definite matrix A  € Cnxn and a vector 

b € IRn . Suppose Z is a linear operator s.t. Z ~ i / 2  A. Then for all 0 <

e <  1/2, P r e c o n It e r R e f i n e m e n t (A ,  Z, e, b) returns where t =  (~3 log J ~|,

s .t .\ \x ^  — A ^ 6 | |a  < e | |A ^ 6 | | a .

2 .3 .3  Schur C o m p lem en ts

Gaussian Elimination is a classical algorithm for solving systems of linear equations. It 

is closely related to the notion of Schur Complements, which we introduce in this section. 

Suppose M  € C nXn is a square matrix and F ,C  C [n] is a partition of [n] into two sets. 

W.l.o.g. taking F  to be the first \F\ indices of [n], we can write

M  =
M  c,c j

When M f,f  is invertible, we define the Schur complement of M  onto C  as

The Schur complement is related to inverses and the LDU decompositions of a matrix. One 

way to see this is through the blockwise LDU decomposition of a matrix

M  =
1V1 F,F 0

0 Sc[M ]c y
V' /

23



www.manaraa.com

This also implies that when M  is invertible,

, _  ( I —MpJ.MF.c'j ( m £ f 0 W  I 0 s

v0 I j   ̂ 0 ScpVE]^ I ̂

fM£F + M ^ M f .c S c IM Ic 1 M w M ^  -M ^ M f .c S o IM J c 1 

, -S cJM Jc 1 ScpM lc1 ,

This in turn implies immediately that

Suppose that C2 Q C\ C [n]. Then

Sc[M]C2 = Sc[Sc[M]Cl]C2.

This follows from noting tha t (M _ 1 )c 2 )c,2 =  ((M ~ 1)ci,C i)c2,C2 an<̂  then inverting both 

matrices.

This in turn tells us tha t we can compute Schur Complements in stepwise manner, 

first Schur complementing onto n — 1 variables (eliminating only one variable), then Schur 

complementing onto n — 2  of the remaining variables etc.

The blockwise LDU decomposition can also be written as a sum of the zero-padded Schur 

complement and a term that agrees with M  on all except the block.

Fact 2.3.2 (Schur Complements and Pseudo-Inverses). Suppose U  is an undirected Lapla­

cian. Let S = Sc[U]^. Then n s (Ut)CjCn s =  Sc[U]J,.

We prove this fact in Appendix Section A.I.

Claim 2.3.3. Consider n x n Laplacians A ,B  ^ 0, s.t. for some 0 < e < 1 we have

IVl^^p 1VI 0  0

M c , f  J y0 Sc[M]c j

24



www.manaraa.com

A « e B. Let F  C [n]. Then

Sc[A]F « e Sc [B]f .

Proof. This follows from Fact 2.3.2, and the fact tha t restriction and inversion preserve 

spectral approximation. . □

2 .3 .4  G a u ssia n  E lim in a tio n , C h o lesk y  F a cto r iza tio n , an d  L U - 

d e c o m p o s it io n

An LU-decomposition of a square matrix M  £ Mnxn is a factorization M  =  CIA, where C 

is a lower-triangular matrix and IA is an upper-triangular matrix, both up to a permutation 

(see Section 5).

When M  is non-singular, linear equations C y  = b and t l x  =  y  and be solved by 

forward and backward substitution algorithms respectively (e.g. see [TBI97]), which run in 

time 0 (nn z(£ )) and 0(nnz(W )). I.e. £ _ 1  and IA~1 can be applied in time proportional 

to the number of non-zeros in C  and IA respectively. This means that if a decomposition 

C, IA of M  is known, then linear systems in M  be solved in time 0 (n n z(£ ) +nnz(W )), since 

Mcc =  b implies x  =  U ~ l C ~xb.

When M  is singular the same forward and backward substitution algorithms can be used 

to compute the pseudo-inverse, in some situations. We focus on a special case where we can 

instead factor M  as M  =  CJ'DIA', where T> is singular and C f, IA' are non-singular.

For the two cases of interest to us, Undirected Laplacians and Eulerian Laplacians of 

connected graphs, this slightly modified factorization can be trivially obtained from an LU- 

decomposition, by Cf equal to C  except C{n, n) =  1 and IA' equal to IA except U(n, n) =  1 

and taking T> to be the identity matrix, except T>(n, n) =  0.

Now, by Fact 2.1.1,

M* =  U m C ' - ^ U ' ^ U ^  .

For connected Undirected and strongly connected Eulerian Laplacians, the kernel and 

co-kernel are always the span of the 1  vector, so we can apply IIm  and n MT efficiently.

Gaussian Elimination is an algorithm tha t can be used to compute an LU-decomposition 

of some matrices. Gaussian Elimination proceeds by writing M  as the sum of a rank 1 term

25



www.manaraa.com

that agrees with M  on the first row and column and a (zero-padded) Schur complement: 

As a convenient notational convention, we define S^0) =f M , the “Oth” Schur complement. 

We then define

it =  (S^-1>(«, i ) 1 / 2 )_ 1 S î-1*(:, i) 

« 4T =  (S<<- 1) ( t , i) 1 / 2 ) - 1 S(<- 1)(i,:) 

g(i) =  S («-l) _  l iUJ t (2 .2)

unless (i, i) = 0, in which case we define S ■''' =  if i) = 0 and S ^-1) ( i , :

) =  0 . We do not define the Schur complement when the diagonal is zero but off-diagonals 

are not. By setting

u  u 2 • ■ • u n J

we get an LU-decomposition M  =  CIA..

It can be shown tha t Gaussian Elimination as described above always produces an LU- 

decomposition when applied an Undirected Laplacian or Eulerian Laplacian. For some other

LU decomposition where the upper triangular matrix is the transpose of the lower triangular 

matrix. This special case is known as a Cholesky factorization. When the Gaussian Elimi­

nation algorithm described above is applied to a Laplacian matrix it computes the Cholesky 

factorization.

D efin ition  2.3.4 (Partial LU-decomposition and Partial Cholesky Factorization). I f  Gaus­

sian Elimination is terminated after k steps (see Equation {2.2)), we get a decomposition 

where

and

classes of matrices, it does not always succeed (e.g. if the first column has a zero diagonal 

but other non-zero entries).

When M  is a positive semi-definite matrix, it can be decomposed as M  .= £ £ T, i.e. an

26



www.manaraa.com

and

U T  =  I U l  U2  • • • Uk

s.t. M  =  Sm  + CU, where S ^  is zero except on indices in C  x C  where C =  {k +  1, . . . ,  n} 

and (S^ ) c , c  — Sc[M]^. Letting F =  [n] \  C, this decomposition can also be written as

£ C,f  0^\ I 0  \  ( I U f ,c ^
M  =

yCc,F Iy  yO (SW )c ,c J  yO U c ,c j

We refer to C ,U , S as a partial LU-decomposition to set C, and when M  is positive 

semi-definite, so C — Z4T , we refer to C, S as a partial Cholesky factorization to set C.

D efinition 2.3.5 (Approximate Cholesky Factorization and Partial Cholesky Factoriza­

tion) . We refer to C as an e-approximate Cholesky factorization of a matrix M  if C is a 

Cholesky factorization of a matrix M  s.t. M « £M .

We refer to C , S as an e-approximate partial Cholesky factorization to a set C of a 

matrix M i / £ , S  is a partial Cholesky factorization to a set C of a matrix M  s.t. M  « € M .

2 .3 .5  Schur C o m p lem en ts  an d  C losu re

Some classes of matrices have the property that if M  is a matrix in the class, then for any 

subset C  of the indices of M , the Schur complement ScpMj^ is also in that class.

This observation, combined with the fact tha t some classes of matrices can be well- 

approximated with sparse matrices of the same class, is at the core of all the fast algorithms 

for solving systems of linear equations that we develop in this dissertation.

Positive definite and positive semi-definite matrices both have the property of being 

closed under Schur complement, i.e. the Schur complement of a positive definite matrix is 

a positive definite matrix and the Schur complement of a positive semi-definite matrix is 

positive semi-definite.

Below, we state the closure property for the matrix classes that we use in this dissertation.

Fact 2.3.6. For each of the following classes, it holds that i / M  is a matrix of this class 

with index set [n], then for all C  C [n], ScfU]^ is a matrix of the same class.

27



www.manaraa.com

• Positive Definite Matrices.

• Positive Semi-Definite Matrices.

• Undirected Laplacians.

•  Eulerian Laplacians.

2 .3 .6  T h e  C liq u e S tru c tu re  o f  Schur C o m p lem en ts

In the previous section, we introduced Schur complement closure properties for several classes 

of matrices. In this section, we show how to prove the closure property for Schur comple­

ments of Laplacians, while also observing that the Schur complement of a Laplacian onto 

n — 1  indices has additional structure tha t will help us develop algorithms for approximating 

these Schur complements.

Similar structure can be found in the Schur complements of Eulerian Laplacians, but we 

defer the proof of this to Chapter 5.

Given a Laplacian U, let S t[U ]v € Knxn denote the Laplacian corresponding to the 

edges incident on vertex v (the star on v), i.e.

St[U]„ d= Y ,  (2.3)
e£E:e3v

M a. 1 a H
i

, then S t[U ] 1 =

v " a y
— a  diag(a)

For example, we denote the first column of U  by 

We can write the Schur complement S =  S c fU ]^ ^ ^ ^ .

S =  U -  ST[U]„ +  St [U]w -  u ^ y U ( :, v1)V (v 1, :).

It is immediate tha t U  — St[U] is a Laplacian matrix, since U  — St[U] =  

YleeE-e^vi w (e)beb J . A more surprising (but well-known) fact is that

Cl [U]01 =  St IUL, -  u ^ l _ yU (:)Ul)U (Ua, :) (2.4)

28



www.manaraa.com

is also a Laplacian, and its edges form a clique on the neighbors of v\. It suffices to show it 

for v\ =  1. We write i ~  j  to denote ( i ,j)  E E . Then

CL[U], =  U i~ — 1 )U(:, 1 )T
0  0 T

0 diag(a) — i~i

Thus S is a Laplacian since it is a sum of two Laplacians. By induction, for all C  C [n], 

Sc[U]c  is a Laplacian.

2.4 Spanning Trees o f G raphs

We assume we are given a weighted undirected graph G = (V ,E ,w ), with the vertices 

labeled V  =  {1, 2,..., n}. Let U  be the associated Laplacian.

D efinition  2.4.1 (Induced Graph). Given a graph G = (V ,E ) and a set of vertices V\ C V, 

we use the notation G(V j.) to mean the induced graph on V\.

D efinition  2.4.2. Given a set of edges E  on vertices V , and Vf, V2 Q V , we use the notation 

E  D (Vij V2) to mean the set of all edges in E  with one end point in V\ and the other in V2.

D efinition  2.4.3 (Contraction and Deletion). Given a graph G = (V ,E) and a set of edges 

E i C E, we use the notation G\E± to denote the graph obtained by deleting the edges in E \ 

from G and G /E \ to denote the graph obtained by contracting the edges in E \ within G and 

deleting all the self loops.

2 .4 .1  S p a n n in g  T rees

Let Tg denote the set of all spanning subtrees of G. We now define a probability distribution 

on these trees.

D efinition  2.4.4 (w-uniform distribution on trees). Let T>q be the probability distribution 

on Tq such that

We refer to T>g as the w-uniform distribution on Tg - When the graph G is unweighted, this 

corresponds to the uniform distribution on Tg -

Pr (X  = T) oc IIe€TWe.

29



www.manaraa.com

D efinition 2.4.5 (Effective Resistance). The effective resistance of a pair of vertices u, v G 

Vq is defined as,

R&ff(u.)V) — bu v̂h^ bu v̂.

where bu v̂ is an all zero vector corresponding to Vq , except for entries of I and — 1 at u and 

v

D efinition  2.4.6 (Leverage Score). The statistical leverage score, which we will abbreviate 

to leverage score, of an edge e =  (u, v ) G Eg is defined as

Ze — w eRejffu ,vfi

Fact 2.4.7 (Spanning Tree Marginals). The probability Pr(e) that an edge e G Eg appears 

in a tree sampled w-uniformly randomly from Tg is given by

Pr(e) =  Ze,

where le is the leverage score of the edge e.

2 .4 .2  Schur C o m p lem en ts  an d  S p a n n in g  T rees

When the matrix M  =  U  is a Laplacian of a graph G =  (V, E) and V\ C V  is a set 

of vertices, we abuse the notation and use both Sc[U]y or Sc[G]y to denote the Schur 

complement of U  onto the submatrix of U  corresponding to Vf; i.e., onto the submatrix of 

U  consisting of all entries whose coordinates (iff) satisfy iff  G V\.

Recall tha t by Fact 2.3.6, the Schur complement of a Laplacian is a Laplacian. This 

means tha t the Schur complement in a graph G = (V, E) onto a set of vertices V\ can be 

viewed as a graph on V\. Furthermore, we can view this as a multigraph obtained by adding 

(potentially parallel) edges to G(Vi), the induced graph on V\. We take this view when 

working with spanning trees: whenever we talk about Schur complements, we separate out 

the edges of the original graph from the ones created during Schur complement operation.

We now provide some basic facts about how Schur complements relate to spanning 

trees. This first lemma says that edge deletions and contractions commute with taking

30



www.manaraa.com

Schur complements.

Fact 2.4.8. (Lemma 4-1 of [CDN89']) Given G with any vertex partition Vi, V2 , for any 

edge e G E  fl (Vi, Vi).

S c [G \e ]n  =  Sc[G]Vl\ e  and Sc[G /e]^ =  Sc[G]Vl/e

Fact 2.4.9. Given G with any vertex partition Vi,V2 , for any edge e 6  E  fl (Vi, Vi), the 

leverage score of e in G is same as that in Sc[G]y .

Proof This follows immediately from Definition 2.4.6 and Fact 2.3.2.

□

31



www.manaraa.com

Chapter 3

Approximate Gaussian Elimination

Algorithm 1 gives the pseudo-code for our algorithm M a s t e r C h o l A p x  our algorithm for 

computing approximate Cholesky factorizations using approximate Gaussian Elimination. 

In Section 3.1, we state the M a s t e r C h o l A p x  algorithm and prove its correctness. This 

algorithm is has a large number of input parameters, and can be used to compute both 

complete and partial approximate Cholesky factorizations, of high or low approximation 

quality. We later show how choosing these parameters appropriately can give algorithms for

• solving Laplacian linear systems (see proofs Theorem 1 .2 . 1  and Corollary 1.2.2 in 

Section 3.2),

• solving Laplacian linear systems faster in dense graphs (see proof of Theorem 3.3.1 in 

Section 3.3),

• and for approximating Laplacian Schur complements (proof of Theorem 1.2.5 in Sec­

tion 3.4).

N o rm a liz ed  M a tr ices  an d  c -B o u n d ed n ess

We will very frequently need to refer to matrices that are normalized by some positive 

semi-definite matrix U. We adopt the following notation: Given a symmetric matrix S s.t. 

ker(U) C ker(S),

S d=  (U +) 1 / 2 S(U +)1/2.

32



www.manaraa.com

We will only use this notation for matrices S that satisfy the condition ker(U) C ker(S). 

Note tha t U  =  I I u  and A ^  B  iff A ■< B.

D efin ition  3.0.1. We say a multi-edge e is c-bounded if

w{e)beb < c.

Given a Laplacian S that corresponds to a multi-graph Gs, and a scalar p > 0, we say 

that S is c-bounded if every multi-edge of S is c-bounded. Since every multi-edge of U  

is trivially 1-bounded, we can obtain a c-bounded Laplacian that corresponds to the same 

matrix, by splitting each multi-edge into k = [ ^ ] identical copies, with a fraction 1/k  of 

the initial weight. The resulting Laplacian has at most km  multi-edges.

3.1 T he M aster C holesky A pproxim ation  A lgorithm  

A lgorithm  1: M a s t e r C h o l A p x ( U ,  k, e, S,  c)
1 Split edges into k = [" clog2 (l/£ )e - 2  ] copies with 1/k  fraction of the original weight

each.
2  Define the set of vertices To — {1? • • • ? k}
3 for i =  1 to k do

Pick some index 7r(i) from F i-i as the ith vertex 
Fi = \  {tr(i)}

— —— - f— ——T7 2-S ^- 1)(7t(z), :) if S ^ - 1>(7r(z), 7T(i)) ^ 0  
Ci  ̂ (S -̂DfTrW.TrW))

0  otherwise
C i < -  C l i q u e S a m p l e ( S ^ _ 1 ) ,7 t (i))
§ «  s ^ - 1) -  St  S ^ - 1) +  Q

7r(i)
9 S i—

10 £  <- (c i c 2 . . .  c fc)
11 r e tu rn  (C, S)

Theorem  3.1.1. Suppose G =  (V,E) is a connected undirected multi-graph with positive 

edge weights w : E  —>■ and associated Laplacian U, and that G has m c-bounded multi­

edges. Given scalars 5 < 1/n100, 0 <  e <  1/2, the algorithm M a s t e r C h o l A p x ( U ,  k, e, <5, c) 

returns an an approximate partial Cholesky decomposition £ , S onto the set {k +  1 , . . . ,  n}

33



www.manaraa.com

s.t. with probability at least 1 — 0(5),

S + C C T « e U, (3.1)

and S is always a Laplacian supported on {k 1 , . . .  ,n }. Depending on what rule is used in

Line 4 of the algorithm, the following are true:

(i) I f  each vertex is picked uniformly at random from the remaining vertex set F i-i, then 

for a llt > 1, the maximum number of non-zero entries in C and S and the total running 

time are each bounded by 0 ( tm \o g n  |~clog2 (l/5 )e - 2 ]) with probability 1  — 1  f n f .

(ii) I f  each vertex is picked uniformly at random from the vertices in i with at most 

twice the average degree of those in this set then the maximum number of non-zero

entries in C and S and the total running time are each bounded by

0 (m log(n /(n  — k )) |"clog2 (l/£ )e_2~|).

A lgorithm  2: =  C l i q u e S a m p l e ( S ,  v )  : Returns several i.i.d samples of edges
from the clique generated after eliminating vertex v from the multi-graph represented 
by S______________________________________
1 for i 4— 1 to degs (u) do
2

3
4
5
6 

7

Sample e\ from list of multi-edges incident on v with probability w (e)/w s(v ) 
Sample e2 uniformly from list of multi-edges incident on v
if ei has endpoints v ,u \ and e<i has endpoints v,U2 and u \ 7  ̂U2 th e n

I v . , w(e1)w(e2) h »T
I 1 w(ei)+w(e2) uliu2 Ul,U2

else
|_ Y j «- 0  

8 return

The following lemma captures some important facts about, Algorithm 2, the 

C l i q u e S a m p l e  routine, which is used inside M a s t e r C h o l A p x . We prove this lemma 

in Section 3.1.1.

Lem m a 3.1.2. Given a Laplacian matrix S that is 1/p-bounded w.r.t. U  and a vertex 

v, C l i q u e S a m p l e (S, v )  returns a sum of degg(u) IID samples Y e G R nXTl. The

following conditions hold

34



www.manaraa.com

1. Y e is 0 or the Laplacian of a multi-edge with endpoints u\,U 2, where u \,U 2 are neighbors 

of v in S.

2. E £ eYe =  CL[Sj„.

3- ||Y e || <  1 jp , i.e. Y e is 1/p-bounded w.r.t. U.

The algorithm runs in time 0 (degs (u)).

Now, let us state the Freedman Inequality from [Trolla]. Let (0, Pr) be a probability 

space, and let J^o Q Q ^ 2  Q • • • Q &  be a filtration of the master sigma algebra. 

A zero-mean matrix martingale is a sequence {Y^ : j  =  0 ,1 ,2 ,.. .}  that is a symmetric- 

matrix-valued random process which is adapted to the filtration and satisfies the following 

properties: E 11Yy |[ <  oo for all j ,  and Yo ^  0, and E \Yj+\\dPj\ =  Y j. For a more compact 

notation, we write E<j Z =f E [Z|j£}_i].

T h eo rem  3.1.3. Consider a zero-mean matrix martingale whose values are symmetric ma­

trices {Yj : j  =  0 , 1 , 2 , . . .}  with dimension d, and let { X , : j  =  1 ,2 ,...}  be the difference 

sequence X j =  Y j — Yj-±.  Assume the difference sequence is bounded in the sense that

Amax(Xj) < R  almost surely for j  = 1 , 2 , 3 , . . . .

Define the predictable quadratic variation process of the martingale:

j
Wj =  ] T  E [X? f o r  j  = 1 ,2 ,3 , . . . .

i = 1

Then, for all t > 0 and a 2 > 0,

Pr[3j  > 0 : Amax(Yj) > t and Amax(W j)  < a2] < dexp a 2 ^ ~^ t / ^ j  '

Proof of Theorem 3.1.1. We will set up a martingale and apply Theorem 3.1.3. In order to 

apply Theorem 3.1.3, we need a total ordering on the random variables, and a sequence of 

filtrations. Consider the ith  elimination, and the eth edge sample of this round of elimina­

tion: This gives a pair (i, e), and we overload the < and < to compare pair of variables in the 

lexicographical sense. We use ^ (i,e) to denote the filtration corresponding to conditioning

35



www.manaraa.com

on all the random choices of the algorithm up until and including the sampling of edge, and 

when (i, e) contains the last edge sample e of elimination i, the filtration also includes

conditioning on the vertex choice for round i +  1. This ensures that conditioning on some 

will determine the vertex at which the next edge is sampled.

We define the j th approximate partial Cholesky decomposition

j
I j U )  =  §k')  +  ^ CiCT. (3.2)

i = 1

Thus our final output equals Tj(n). 

Observe that

UW) -  U ^ - 1) =  CjcJ  +  -  S ^ - 1)

’r(j)

=  C j  -  C l

Each call to C l i q u e S a m p l e  returns a sum of sample edges. Letting Y ^  denote the eth 

sample in the j th call to C l i q u e S a m p l e , we can write this sum as ]Ce Y ^ .  We can apply 

Lemma 3.1.2 to find that the expected value of C j is E<(j,e) Ye^ =  C l S ^ _1) 

Hence the expected value of is exactly U ^ -1 ), and we can write
*ti)

u (j)  _  u ^ - 1) =  V  y£ j) -  e  Y i j ) .
V  <(^

By defining =f Y ^  — E <^ e) this becomes — U ^ -1) — • So, without

conditioning on the choices of the C h o l A p x  algorithm, we can write

V (j ) _ u(0) = E E *
i =  1 e

For the sequence of j ,  this is a zero-mean martingale. 

Ultimately, our goal is to show that

(0

36



www.manaraa.com

-  eU -< U (n) -  U -! eU (3.3)

with high probability. It turns out to be easier to consider a related martingale, which 

includes a simple stopping condition. We define

z®  =
Xe if E ^ i E / Z /  S e n

0 o.w.
(3.4)

We then consider the zero-mean martingale

rp   \   ̂ 17 (j )

Now, if

(j,/)<(*, e)

then Equation (3.3) is satisfied. Next we apply Theorem 3.1.3 to prove concentration of

Let W (i,e) =  E 0-,/)<(i,e)E<O./)(Z/))2 Then

Pr[U<"> d  (1 +  e)U] < Pr[3(i,e) : Amax(T (i>e)) > e]

< Pr[3(i, e) : Amax(T ^ ;e)) > e and Amax(^V^)ê ) < a ]

+  Pr[3(i,e) : Amax(W (i>e)) >  a 2]

We start by bounding the first probability among these two terms. Initially, note that either 

z f  =  0 or z f  = Y (J } -  E Y f ,  so

z« <e
<i) ^ ( 0

< max

< 1 /P,

vW1 e E Y ^ (since both terms are PSD)

(3.5)

37



www.manaraa.com

by the 1 /p-boundedness guarantee of Lemma 3.1.2. Thus, a valid norm bound for the 

application of Theorem 3.1.3 is R  < I f  p — 3  io g ' Finally, we ch °ose cr2 — . By

Theorem 3.1.3, this gives

Pr[3(i,e) : Amax(T (i)e)) > e and Amax(W (i>e)) < a 2} < nexp

(  pe2/ 2  \
5 n6XP log(l/<5) + e3/3"J

< S.

Secondly, we bound the term Pr[3(i,e) : Amax(W (i;e)) >  cr2]. We define a notation of
def

W (j)g) at the last edge sample W j =  W ( i,eiast)• Note tha t W ( ^ e) ^  whenever

(i,e) <  (i',e '). Thus Pr[3(i,e) : Amax( W >  a 2] =  Pr[3i : Amax(W i)  >  cr2]-

We now construct a zero mean martingale which we will use to bound this probability,

by another application of Theorem 3.1.3. In this application, we need a different sequence of

filtrations than before. We define to denote the filtration corresponding to conditioning 

on all the random choices of the algorithm in round i, but not including the random choice 

of vertex for round i +  1 .

We define W 0 =  0. Let V f d=  w 4 -  W M  -  E<j [W; -  W M ] =  W; -  E<j [Wf]. V f is 

zero-mean conditional on J^ _ i , and so R i =  Yl)=i X? a zero-mean martingale.

i

R-i =  E w i ~  w ^ -i  -  e  !w ; -  w t- i l
3 = 1

i
=  W j — ^  E [Wj — W j_i]

3= 1

Let M i =  the terminology of Theorem 3.1.3, W (i>e) is the predictable

quadratic variation process of T ^ ey  Ri is a zero-mean martingale corresponding to Wj, Vj 

is the associated difference sequence, and M i is the predictable quadratic variation process 

of R i.

Having established the necessary notation, we state a few key facts about these random 

matrices in Claim 3.1.4 below. We will prove Claim 3.1.4 later, but first we will see how to

_ £ 7 2 _ _ \  
r2  +  Re/3 J

38



www.manaraa.com

use the claim to complete the proof of Theorem 3.1.1. 

C la im  3.1.4.

i. o d w , - - w H ^ n .

£  E j  E <j [w 3- -  W j-i]  d

3. M i ^

Let u 2 = In n. Then by Claim 3.1.4, Part 3, we have Pr[3i : Amax(Mi) > u 2] =  02l _

Now, using Claim 3.1.4, Part 2 , we get

Pr[3i : Amax(W i) >  a2] =  Pr

< Pr 

=  Pr

3i : Amax | R i +  ^ 2  E [W j -  W j_ J  J > cr5

2 6  Inn
j=1

3i : Amax (Ri) > <J

 ̂ n 9 6 Inn , . _ , .  o
3« : Amax(Ri) > a ------ and. Amax(]V[i) — ^

We now want to apply Theorem 3.1.3, to bound the probability above, with Ri as the 

zero-mean martingale, V i is the associated difference sequence, and M i as the predictable 

quadratic variation process. By Claim 3.1.4, Part 1, we have

IIViII =  W i -  W<_i -  E [Wi -  W<_i<i

< 1/P-

E [W; -  Wj_x]
<1

(since both terms are PSD)

which gives us a value for the norm control parameter R. Thus by Theorem 3.1.3, and using 

log(l/£) >  1 0 0  log n, we get

Pr
6

3i : Amax(Ri) ^  cr Inn  and Amax(lV[i) 5̂  to < nexp

<  (5.

iiogm _ 5 lnn)2/2 \

Inn ) + log(l/<y) /3

39



www.manaraa.com

An essentially identical proof can be used to control Pr[3(i,e) : Amax(—T (ie)) >  e], since 

all norm calculations remain the same and — T(i,e) and have the same predictable

quadratic variation process. All together this completes the proof of the claim that

S(i) +  C C T U. (3.6)

holds with probability at least probability at least 1 — 45.

Finally, we need to bound the expected running time of the algorithm. We start by 

observing that the algorithm maintains the two following invariants:

1. Every multi-edge in S ^ -1) is 1/p-bounded.

2. The total number of multi-edges is at most pm.

We establish the first invariant inductively. The invariant holds for because of the

splitting of original edges into p copies with weight 1 /p. The invariant thus also holds for

S(°) -  St §(°) , since the multi-edges of this Laplacian are a subset of the previous
L Jtt(i )

ones. By Lemma 3.1.2, every multi-edge Ye output by C liq u eS am p le  is 1 //0-bounded, so

S(1) =  S(°) — S t  S(°) +  Ci is 1/p-bounded. If we apply this argument repeatedly for
L -Mi)

j  = 1 , . . . ,  n  — 1  we get invariant (1 ).

Invariant (2 ) is also very simple to establish: It holds for because splitting of original

edges into p copies does not produce more than pm  multi-edges in total. When computing

we subtract S t  S ^ -1) , which removes exactly degg(j_i)(7r(jf)) multi-edges, while
L Jvr( i )  ^

we add the multi-edges produced by the call to C l i q u e Sa m p l e ( S ^ _:l\  7r(j)), which is at 

most degg(J-_1)(7r(i7')). So the number of multi-edges is not increasing.

Finally, the statement of Theorem 3.1.1 considers two variants of Algorithm 1, depending 

on the rule used for picking a random vertex in Line 4 of the algorithm. First we prove the 

statement for Rule (i), where a vertex is chosen uniformly at random. By Lemma 3.1.2, the 

running time for the call to C l i q u e S a m p l e  is 0 (degg(:?)(7r(<;))). Given the invariants, we 

get that the expected time for the j th call to C l i q u e S a m p l e  is degg(j)(7r(ji))) =

0 (p m /(k  +  1 — j)) . Thus the expected running time of all calls to C l i q u e Sa m p l e  is 

0 {m p Y ^kj =i k + i-j') = 0 (m e~ 2 log2 (1/d) logn). This also bounds the expected running time 

of the whole algorithm. The total number of entries in the £ ,  S matrices must also be

40



www.manaraa.com

bounded by O (me- 2  log2 (1/5) log n) in expectation. Finally, we can also show that the 

running time and number of non-zero entries in the output of the algorithm is concentrated. 

The conditional on previous rounds, the running time in round j  of elimination is a positive 

random variable tha t is at most 2pm , and in expectation 2pm  • fcjjrfz j • By subtracting the 

average in each round, we can get a scalar martingale. Using a standard application of the 

scalar Freedman Inequality [Fre75] (see also [Trolla] for a convenient version), one can show 

tha t the running time is upper bounded by 0 (c p m logn) with probability 1  — 1 / n c for all 

c >  1. This completes the analysis for the Rule (i) case.

We now consider the Rule (ii) case, where for each elimination a vertex is chosen uni­

formly at random among the remaining vertices of F)_i with at most twice the average 

degree among vertices in F)_i. It is simple to construct a data structure for picking such 

a vertex: We maintain an array of degrees of remaining vertices, as well as their sum. We 

then pick a random vertex from this array, repeating until we get a vertex with at most 

twice the average degree. Degrees in the array can be updated efficiently as edges are added 

or removed. To handle vertex deletions from this array, we can mark vertices as deleted 

when we eliminate them, and resize the array each time half the vertices have been marked 

as deleted. W ith probability > 1  — 5, the time spent on vertex sampling using this data 

structure is dominated by other terms in the running time.

By Lemma 3.1.2, the running time for the call to C l i q u e S a m p l e  is 0 (degg(:/)(7r(j))). 

Given the invariants, we get that the time for the j th call to C l i q u e Sa m p l e  is 

degg(j) (tt(j))) =  0 {p m /(k  +  1 — -j)). Thus the running time of all calls to 

C l i q u e Sa m p l e  is 0 (m p  k+T^j ) =  C(me~ 2  log2 (l/5 ) logn). This also bounds the 

running time of the whole algorithm. The total number of entries in the £ , S matrices must 

also be bounded by O (me- 2  log2 (1/5) logn). □

3 .1 .1  C liq u e  S a m p lin g  P ro o fs

In this section, we prove Lemmas 3.1.2 and 3.1.4 that characterize the behavior of our 

algorithm C l i q u e S a m p l e , which is used in C h o l A p x  to approximate the clique generated 

by eliminating a variable.

A im p o r ta n t  e lem en t of th e  C l i q u e S a m p l e  a lg o r i th m  is o u r  ve ry  s im ple  a p p ro a c h  to

41



www.manaraa.com

leverage score estimation. Using the well-known result that effective resistance in Laplacians 

is a distance (see Lemma 3.1.6), we give a bound on the leverage scores of all edges in a 

clique that arises from elimination. Given a undirected Laplacian S, we let w s(v ) the sum 

of the weights of the edges incident on vertex v, i.e.

w s{v) =  w(e).
eeE{  S) 

eBv

Then by Equation (2.3.6)

= 1 E E w(e)w(e') u 
n /  j /  , ( \ ° u , z ° U,z-
2  z ^ '  ws[v)

e e E ( S) e'EE(S)  ̂ ’
e has &' has 

endpoints endpoints 
viu v,z^u

(3.7)

Note that the factor ^ accounts for the fact that every pair is double counted.

L em m a 3.1.5. Suppose multi-edges e, e' 3 v are 1/p-bounded w.r.t. U , and have endpoints 

v ,u  and v ,z  respectively, and z ^ u ,  then w(e)w(e,)bUjZb^L Z is w(e)+w(e ) -bounded.

To prove Lemma 3.1.5, we need the following result about Laplacians:

L em m a 3.1.6. Given a connected weighted multi-graph G — (V , E, w ) with associated Lapla­

cian matrix L in G, consider three distinct vertices u ,v ,z  G V , and the pair-vectors bUfV,

t^v.z and bn z •
T

u,z^u, zb,i,z b < bu,vbu,v + ^V,Z^v,Z

This is known as phenomenon tha t Effective Resistance is a distance [KR93].

Proof of Lemma 3.1.5. Using the previous lemma:

w{e)w{e!) bu,zbu ẑ < w(e)w(e') bu,vbUjV + bv,zby)Z < — (w(e) +  w(e')) 
P

□

To prove Lemma 3.1.2, we need the following result of Walker [Wal77] (see Bringmann 

and Panagiotou [BP12] for a modern statement of the result).

42



www.manaraa.com

L em m a 3.1.7. Given a vector p  6  R d of non-negative values, the procedure 

U n s o r t e d P r o p o r t i o n a l S a m p l i n g  requires 0 {d ) preprocessing time and after this allows 

for IID sampling for a random variable x  distributed s.t.

Pr[x =  i] = p{i)/\\p \\1 - 

The time required for each sample is 0(1).

R e m a rk  3.1.8. We note tha t there are simpler sampling constructions than that of 

Lemma 3.1.7 that need O(logn) time per sample, and using such a method would only 

worsen our running time by a factor O(logn).

Proof of Lemma 3.1.2. From Lines (5) and (7), Y* is 0 or the Laplacian of a multi-edge 

with endpoints U\,U2- To upper bound the running time, it is important to note that we do 

not need access to the entire matrix S. We only need the multi-edges incident on v. When 

calling C l i q u e S a m p l e , we only pass a copy of just these multi-edges.

We observe that the uniform samples in Line (3) can be done in 0(1) time each, provided 

we count the number of multi-edges incident on v to find degg(u). We can compute degg(u) 

in 0(degs (u)) time. Using Lemma 3.1.7, if we do 0 (degs (u)) time preprocessing, we can 

compute each sample in Line (2 ) in time 0(1). Since we do 0(degg(u)) samples, the total 

time for sampling is hence 0 (degs (u)).

Now we determine the expected value of the sum of the samples. Note tha t in the sum 

below, each pair of multi-edges appears twice, with different weights.

in -\r j  / \ w(e) 1 w{e)w(e!') -p _ r .
E 2 ^ Y * =  de§s(v) V  V  — 7 \ i  n "7 u  ( n b^ zhu,z =  C l S p •vvsiv) dego(u) w(e) +  w(e') 

i e eE(  S) e'eE(  S) K J
e has e! has 

endpoints endpoints 
v’u v,z^u

By Lemma 3.1.5,

i— n w(e)w(e')
Y,; < max

e ,e 'e£ (S ) w(e) +  w(e') 
e,e' has 

endpoints 
v,u and v,Zy£u

bu,zbUjZ < i I p -

43



www.manaraa.com

Proof of Claim 3.1.4■ We first establish Part 1.

E (Z»);
<b,e)

We consider two cases, the first case is when the condition

□

j < i  f

(3.8)

holds. In this case, by (3.4), we have

W ,-W i- i  =  J 2  E (X<°)2tO.

and, using the norm bound 

rem 3.1.1, we get

< 1/p  established Equation (3.5) in the proof of Theo-

-OK 2 azO) fvOK 2

E I l Y e l l  Ye ^  - C l SO-1) ^  - S t SO-1)
L -1 7 t(» ) p L -1 Tv(i)

(3.9)

Equation (3.8) implies, using e < 1/2,

i— 1

u (*_1> = U + Y ,  E  X“  ^ (1 + e)U ^ 2U-
j= 1 e

This in turn gives

(3.10)

0 ^Wi - WH  ^  - S t so - k
1 :-< -< J i n .

7 r ( l )  p 2p

When the condition in Equation (3.8) does not hold, by (3.4), Wj-Wj_i = 0. All together, 

this completes the proof of Part 1.

We now turn to Part 2. First we consider the case when the condition in Equation (3.8)

44



www.manaraa.com

holds. Note tha t E<* St ^  -< — since we choose from - I 1- vertices and— n —i —1 ’ 2J t r( i )

every edge is included for at most 2  of those choices. 

Combining this with Equations (3.9) and (3.10) gives

6 ^  6 1 n n ^

This establishes Part 2 . Finally, we show Part 3.

= E  f .V ? = E  f . f W ? -  W J-1 -  E [Wi -  w ; - i l )  ^ E  f-  (w i -  w i - i )
j<i 3 j<i 3 '  J '  j<i 3

1  E  ^  (W i -  W ^-i) I I ^
j<i

□

3.2 Solving Laplacian Linear System s using A pproxim ate  

G aussian  E lim ination

We use C h o l A p x ( U ,6 )  =f M a s t e r C h o l A p x (U ,  k <— n, e «- 1/2, 5, c «- 1) to denote the 

algorithm we get from calling M a s t e r C h o l A p x  with k = n, e =  1 / 2 , and c =  1, and using 

Rule (ii) for eliminations. As an immediate corollary of Theorem 3.1.1 with these parameter 

settings, we get the following.

T h e o r e m  1 .2 .1  (Approximate Cholesky Factorization for Laplacians). Suppose U  £  R nxn 

is a Laplacian matrix with m  non-zero entries. Given a scalar 5 <  1 /n 100, the algorithm 

C h o l A p x (U ,  S) returns an approximate Cholesky factorization C s.t. with probability at 

least 1 — 0(5),

c.cT »1/2 u.

The maximum number of non-zero entries in C and the total running time are both bounded 

by 0 (m log 2 (1/(5) logn).

The sparse approximate Cholesky factorization for U  given by Theorem 1 .2 . 1  immedi­

45



www.manaraa.com

ately implies fast solvers for Laplacian systems.

We use C h o l A p x S o l v e r (U ,  e, 6, b) to denote a routine which first calls C h o l A p x (U , 6) 

to compute an approximate Cholesky factorization and then uses it in the preconditioned 

iterative refinement, as described in Theorem 2.3.1 (Section 2.3.2) to compute and return 

an approximate solution of the linear system U x  = b.

Corollary 1.2.2 (Laplacian Linear Equation Solver). Suppose G = (V ,E) is a con­

nected undirected multi-graph with positive edge weights w : E  —» M+, and associated 

Laplacian U , and that G has m  multi-edges. Given a scalar 5 < 1 /n 100, the algorithm 

C h o l A p x S o l v e r (U ,  e, 5, b) returns x  s.t. with probability at least 1 — 0(6),

| | x —U + (,!!„ <  e llU + 61^. (1.1)

The running time is bounded by 0 (m  log2 (1/6) logn log (1/e)).

3.3 G oing Faster w ith  Sparsification

T h e  ru n n in g  t im e  a n d  sp a rs i ty  of t h e  C h o l A p x  a lg o r i th m  for solving L a p lac ian  l inear 

sy s tem s  c a n  be  im p ro v ed  b y  co m bin ing  it  w i th  a  spars if ica t ion  rou tine .

We will build our sparsification routine using C h o l A p x  and the uniform sampling tech­

nique of [CLM+ 15]. One consequence of their result is that one can compute fairly good 

upper bounds for the leverage scores of Laplacian edges by computing leverage scores with 

w.r.t. a crudely subsampled version of the matrix. The leverage scores w.r.t. the crudely 

subsampled matrix can in turn be computed using the Johnson-Lindenstrauss approach 

of [SSIlb].

Specialized to Laplacians and combined with the leverage score estimation proce­

dure of Spielman and Srivastava, the uniform sampling approach gives the algorithm 

S u b s a m p l i n g G r a p h S p a r s i f y , whose guarantees are described in the following theorem.

Theorem  3.3.1. Let L a p S o l v e r  be a Laplacian linear system solver s.t. 

L a p S o l v e r (U ,  b,e,6) returns x  s.t. with probability 1 — 0(6), ||a? — U + 6 ||^ <  e IIU+&II U

in time T (m , e, 6).

46



www.manaraa.com

Given scalars 0 <  5 <  1/n, 0 <  e <  1 /2 ,  and K  >  1, let p =  e_ 2 l o g ( l /6). The algorithm 

S u b s a m p l i n g G r a p h S p a r s i f y ( L a p S o l v e r ,  U, e, 6, K ) returns U  with O (Kpn) edges s.t. 

with probability 1 — 0(6),

U « e U

and every multi-edge in U  is jj-bounded w.r.t. U.

The algorithm runs in time 0 (p K n  +  m l o g n  +  T (m /K ,  1 / 2 ) l o g n ) .

The theorem above is proven in [CLM+15], except they do not note that the output

edges are 1 /p-bounded, however, this is immediate from the concentration results, provided

one uses Spielman-Srivastava style replacement sampling [SSIlc].

A lgorithm  3: S p a r s e r C h o l A p x ( U ,  6 )

1 K \ <— log2 n

2 U  i— S u b s a m p l i n g G r a p h S p a r s i f y ( C h o l A p x S o l v e r , U, 1 / 8 , 6, K {)

3  K  i— log1 0 0  n

4 S , £ f -  M a s t e r C h o l A p x ( U ,  k < -  n ( l  -  1 / A 2), e f - l / 8 , ^ , c f -  l / lo g ( l /< 5 ) )

5 S  < -  S u b s a m p l i n g G r a p h S p a r s i f y ( C h o l A p x S o l v e r ,  S, 1 /8 ,5 ,  K )

6 C  4 -  M a s t e r C h o l A p x ( S ,  k < -  n / K 2,e < - 1 / 8 ,6 ,c< -  l / l o g ( l / £ ) )

7 dir i--
/  / 0 \ \

\ C )
8  r e tu rn  C

T h eo rem  3.3.2. Suppose G = (V ,E ) is a connected undirected multi-graph with positive 

edge weights w : E  —>• R+, and associated Laplacian U , and that G has m  multi-edges. 

Given a scalar 6 < 1 / n 100, the algorithm S p a r s e r C h o l A p x (U ,  5) returns an approximate 

Cholesky decomposition C, s.t. with probability at least 1 — 0(5),

CCT « 1 / 2  U. (3.11)

The running time of the algorithm is bounded by 0 (m lo g 2(l/5 )  +

nlog 3 nlog2(l/5 )  loglog(l/<5)), and the maximum number of non-zero entries in C is 

bounded by 0 (n  log2 n log 2  (1/5) log log (1/5)).

47



www.manaraa.com

Proof. The first call to S u b s a m p l i n g G r a p h S p a r s i f y  runs in time

O ^(m  +  -^-m log 2 (l/<5) logn) logn +  Ahnlog(l/<5)^ =  O (m log2 (l/<5) +  nlog(l/<5) log2 n) .

O utput edge count is nlog(l/<5) log2  n, and is 1 / log(l/<5)-bounded. So after splitting to 

log2 (1 /(5) ~b°unded, the output edge count is n log 2 (l/<5) log2 n.

Then M a s t e r C h o l A p x  in Line 4 runs in time nlog 2 (l/h ) log2  nloglog(l/<5), and the 

output edge count is n log 2 (l/<5) log2 nloglog(l/<5).

Next, S u b s a m p l i n g G r a p h S p a r s i f y  in Line 5 runs in expected time (n refers to the 

original size):

n log 2 (l/<5) log3 n lo g lo g (l/5) +  n ^ 2K log(l/<5) +  -^n lo g 2 (1/5) log5 n lo g lo g (l/5).

And, after splitting edges to ensure j^^y^y-boundedness, the output edge count is 

nlog 2 (1/(5) log2 n. Then the last call to M a s t e r C h o l A p x  runs in time n-^ log2 (1/(5) logn.

□

3.4 A pproxim ating Schur C om plem ents using A pproxim ate  

G aussian  E lim ination

Given a Laplacian U  and a subset C  of its vertices, we use W e a k S c h u r A p x (U ,  C, e, 5) to 

denote algorithm we get from calling M a s t e r C h o l A p x  with k = n — \C\ using Rule (ii) 

for eliminations, and w.l.o.g. we assume that the indices of U  are sorted so that the first 

k indices correspond to the vertices of V  \  C. Finally, we define W e a k S c h u r A p x  to only 

output S(k\  As an immediate corollary of Theorem 3.1.1 with these parameter settings, we 

get the following.

Corollary 3.4.1. Suppose G = (V ,E) is a connected undirected multi-graph with positive 

edge weights w : E  —» M+, and associated Laplacian U , and that G has m  multi-edges. Given 

a subset C C V  of the vertices of U , and scalars 5 < 1 /n 100, 0 < e < 1/2, the algorithm 

W e a k S c h u r A p x (U ,  C, e, 5) returns an approximate partial Cholesky decomposition Z , S

48



www.manaraa.com

onto set C s.t. with probability at least 1 — 0(5),

S +  Z Z T « e U.  (3.12)

The maximum number of non-zero entries in C, and S and the total running time are each 

bounded by 0 (e~ 2m  log2 (1/5) logn).

We also need the following observation about the output S ^

C laim  3.4.2. Writing U ^  = S^  +  C C  , we have

Sc jj(k)j _  g(fc)# 
F

Proof. This claim is very simple to prove: Using the one-by-one elimination procedure 

for computing a Schur complement as described in Section 2.3.4, we get tha t the rank 1 

subtraction in the ith  step when computing S c [U ^ ]^ , is exactly CicJ. □

By combining Corollary 3.4.3, Claim 3.4.2, and Claim 2.3.3, we immediately get the 

result below.

Corollary 3.4.3. Suppose G = (V, E ) is a connected undirected multi-graph with positive 

edge weights w : E  —> K+, and associated Laplacian U , and that G has m  multi-edges. 

Let F  C V  be a subset of the vertices of U  with |.F| =  k. Given scalars 6 < l / n 100; 

0 < e <  1/2, the Laplacian matrix S returned by the algorithm W e a k S c h u r A p x (U ,  e, 5) 

satisfies S Sc[U]F , with probability at least 1 — 0(5). The maximum number of non-zero 

entries in C and S and the total running time are each bounded by 0 (e~ 2m log2 (1/5) logn).

Finally, we want to develop a version of the Schur approximation algorithm where the 

e~2 factor in the running time multiplies a factor of n  rather than m. This will later be 

im portant when we develop an algorithm for sampling random spanning trees.

We can achieve this and improved sparsity of the output by combining the 

routine with a sparsification algorithm. We use a slightly simpler routine than 

S u b s a m p l i n g G r a p h S p a r s i f y  from Section 4.1, since we will not worry too much about 

the number of logs in the running time.

49



www.manaraa.com

We use G r a p h S p a r s i f y  to refer to the leverage score estimation procedure of Spiel- 

man and Srivastava [SSIlc]. Stated for Laplacian solvers with solving time equal to their 

construction time, the guarantees of the algorithm are described in the following theorem.

T h eo re m  3.4.4. Let L a p S o l v e r  be a Laplacian linear system solver s.t. 

L a p S o l v e r ( U ,  b,e,5) returns x  s.t. with probability 1 — 0(5), ||cc — ~U+b\\L <  e l i u n i i u .  

Assume L a p S o l v e r  runs in time T (m ,e ,5 ).

Then the algorithm G r a p h S p a r s i f y (L a p S o l v e r , U, e, 5) returns U  with

0(e~ 2n \og (l /  5)) edges s.t. with probability 1 — 0(5)

U « e U.

The algorithm runs in time 0 (n e~ 2log(l/5) T  m \og(l/5 ) -\-T(m, 1 /2 )  lo g ( l / £ ) ) .

B y  co m bin ing  W e a k S c h u r A p x  w i th  G r a p h S p a r s i f y  a n d  C h o l A p x  we g e t  a  Schur

co m p lem en t  a p p ro x im a t io n ,  S c h u r A p x , s t a t e d  as A lg o r i th m  4.

A lg o rith m  4: S c h u r A p x (U ,  F, e, 5)

1 U  < -  G r a p h S p a r s i f y ( C h o l A p x , U ,  e / 3 , 5 )

2 C , S  < -  W e a k S c h u r A p x ( U ,  F, e / 3 , 5)

3 S  < -  G r a p h S p a r s i f y ( C h o l A p x , U ,  e / 3 , 5 )

4  r e tu rn  S

The performance of this algorithm is characterized by the following theorem.

T h eo re m  1.2.5 (Approximation of Laplacian Schur Complements). Suppose U  E Rnxn 

is a Laplacian matrix with m  non-zero entries. Given a set vertices C  C V, and scalars 

0 < e <  1 / 2 , 0 < 5 < 1 , the algorithm S churA px(L , C, e, (5) returns a Laplacian matrix 

S. With probability > 1 — 0(5), the following statements all hold: S « e Sc[U]^. S is 

a Laplacian matrix whose edges are supported on C. Let k =  \C\ — n — | j F | .  The total 

number of non-zero entries S is 0 (ke~ 2 lbg(n/5)). The total running time is bounded by 

0 ((m lo g n lo g 2(n/5) +  ne~2 log n  log4 (n/5)) polyloglog(n)).

Proof. The proof is immediate from combining Corollary 3.4.3, Theorem 3.4.4 and Corol­

lary 1 .2 .2 . □

50



www.manaraa.com

Chapter 4

Sampling Random Spanning Trees

We present an algorithm that, with high probability, generates a random spanning tree from 

an edge-weighted undirected graph in 0(m ax {n4/3m 1//2, n 2}) time. The tree is sampled from 

a distribution where the probability of each tree is proportional to the product of its edge 

weights. This improves upon the previous best algorithm due to Colbourn et al. tha t runs in 

matrix multiplication time, 0 (n w). For the special case of unweighted graphs, this improves 

upon the best previously known running time of 0 (m m {n u ̂ my/n^rn^^}) for m  n 7/4 

(Colbourn et al. ’96, Kelner-Madry ’09, Madry et al. ’15).

Our algorithm samples edges according to their conditional effective resistance as in 

[HX16]. We repeatedly use the well known fact that the effective resistance multiplied by 

the edge weight, which we will refer to as the leverage score of the edge, is equal to the 

probability that the edge belongs to a randomly generated spanning tree. To generate a 

uniformly random spanning tree, one can sample edges in an iterative fashion. In every 

iteration, the edge being considered is added to the spanning tree with probability exactly 

equal to its leverage score. If it is added to the tree, the graph is updated by contracting 

that edge, otherwise, the edge is removed from the graph. Though using fast Laplacian 

solvers [ST14a] one can compute the leverage score of a single edge in 0 (m )  time, since one 

needs to potentially do this m  times (and the graph keeps changing every iteration), this 

can take 0 (m 2) time if done in a naive way. It therefore becomes necessary to compute the 

leverage scores in a more clever manner.

The algorithms in [CDN89, HX16] get a speed up by a clever recursive structure which

51



www.manaraa.com

enables one to work with much smaller graphs to compute leverage scores at the cost of 

building such a structure. This kind of recursion will be the starting point of our algorithm 

which will randomly partition the vertices into two equally sized sets, and compute Schur 

complements onto each of the set. We crucially use the fact that Schur complement, which 

can be viewed as block Gaussian elimination, preserves effective resistances of all the edges 

whose incident vertices are not eliminated. We first recursively sample edges contained in 

both these sets, contracting or deleting every edge along the way, and then the edges tha t 

go across the partition is sampled. Algorithm in [HX16] is essentially this, and they prove 

tha t it takes 0 ( n u).

In order to improve the running time, the main workhorse we use is the Schur complement 

approximation routine from Section 3.4. Since we compute approximate Schur complements, 

the leverage scores of edges are preserved only approximately. But we set the error parameter 

such tha t we can get a better estimate of the leverage score if we move up the recursion tree, 

at the cost of paying more for the computing leverage score of an edge in a bigger graph. 

We give a sampling procedure tha t samples edges into the random spanning tree from the 

true distribution by showing that approximate leverage score can be used to make the right 

decisions most of the times.

S u b seq u en tly , we a re  p re se n te d  w ith  a  n a tu ra l  trad e -o ff  for o u r e rro r  p a ra m e te r  choice 

in  th e  S c h u r A p x  ro u tin e : la rg e r e rro rs  sp eed  u p  th e  ru n tim e  o f S c h u r A p x , b u t  sm alle r 

e rro rs  m ake  m ov ing  u p  th e  recu rs io n  to  o b ta in  a  m o re  e x a c t effective re s is ta n c e  e s tim a te  

less likely. F u rth e rm o re , th e  recu rsive  c o n s tru c tio n  will cau se  th e  to ta l  v ertices  across each  

level to  d o u b le  m a k in g  sm all e rro r  p a ra m e te rs  even  m o re  co stly  as we recu rse  dow n. O u r  

choice of th e  e rro r  p a ra m e te r  w ill b a lan ce  th e se  trad e -o ffs  to  o p tim ize  ru n n in g  tim e .

The routine S c h u r A p x  produced an approximate Schur complement only with high 

probability. We are not aware of a way to certify that a graph sparsifier is good quickly. 

Therefore, we condition on the event that the S c h u r A p x  produces correct output on all 

the calls, and show ultimately show tha t it is true with high probability.

Our algorithm for approximately generating random spanning trees, along with a proof 

of Theorem 1.2.6 is given in Section 4.1 and 20.

52



www.manaraa.com

4.1 A lgorithm  for Sam pling Spanning Trees

It is well known tha t for any edge of a graph, the probability of that edge appearing in 

a random spanning tree is equal to i t’s leverage score. We can iteratively apply this fact 

to sample a tu-uniform random tree. We can consider the edges in an arbitrary sequential 

order, say e i , ..., em G E, and make decisions on whether they belong to tree. Having decided 

for edges e i , ..., e*, one computes the probability P i + i ,  conditional on the previous decisions, 

tha t edge e^+i belongs to the tree. Edge e^+i is then added to the tree with probability Pi+i.

To estimate the probability that edge e^+i belongs to the tree conditional on the decisions 

made on e i , ..., e*, we can use Fact 2.4.7. Let E t  C { e i, ..., e^} be the set of edges tha t were 

included in the tree, and F t  C { e i, ..., e*} the subset of edges that were not included. Then, 

P i + i  is equal to the leverage score of edge e^+i in the graph G ^+1) := (G \ F t ) / E t  obtained 

by deleting edges E t  from G and then contracting edges Etc.  In other words, we get 

from by either deleting the edge e* or contracting it, depending on if e* was not added to 

the tree or added to the tree, respectively. Note that as we move along the sequence, some 

of the original edges may no longer exist in the updated graph due to edge contractions. In 

that case, we just skip the edge and move to the next one.

Computing leverage score of an edge, with e multiplicative error, requires 0 (m  log 1/e) 

runtime. Since we potentially have to compute leverage score of every edge, this immediately 

gives a total runtime of 0 ( m 2).

Our algorithm will similarly make decisions on edges in a sequential order. Where it 

differs from the above algorithm is the graph we use to compute the leverage score of the 

edge. Instead of computing the leverage score of an edge in the original graph updated 

with appropriate contractions and deletions, we deal with potentially much smaller graphs 

containing the edge such that the effective resistance of the edge in the smaller graph is 

approximately same as in the original graph. In the next section, we describe the sampling 

procedure tha t we use to sample from the true distribution, when we have access to a cheap 

but approximate routine to compute the sampling probability.

53



www.manaraa.com

4 .1 .1  S tru c tu re  o f  th e  R ecu rsio n

We now describe the recursive structure of the algorithm given in Algorithm 5. The structure 

of the recursion is same as in [HX16]. Let the input graph be G = (V g , E q )• Suppose at 

some stage of the algorithm, we have a graph G. The task is to make decisions on edges in 

E q ^ E ^ .  We initially divide the vertex set into two equal sized sets Vq = V1UV2. Recursively, 

we first make decisions on edges in G(V1) fl Eg,  then make decisions on edges in GiVz) ^ E q  

and finally make decisions on the remaining edges. To make decisions on G(Vi) fl Eg,  we 

use the fact tha t the effective resistance of edges are preserved under Schur complement. 

We work with the graph G\ = S c h u r A p x (G , Vi, e) and recursively make decisions on edges 

in E g  H G(Vi). Having recursively made decisions on edges in E g  H G(V1), let E t  be the 

set of tree edges from this set. We now need to update the graph G by contracting edges 

in E t  and deleting all the edges in Ej- fl G(V\) H Eg- Then we do the same for the edges in

E G n G (V 2).

Finally, we treat the edges E g  fl (Vf, V2 ) tha t cross V\, V2 in a slightly different way, and 

is handled by the subroutine Sa m p l e A c r o s s  in the algorithm. If we just consider the edges 

in Eg,  this is trivially a bipartite graph. This property is maintained in all the recursive calls 

by the routine S a m p l e A c r o s s . The routine S a m p l e A c r o s s  works by dividing V\, V2 both 

into two equal sized sets V\ = L 1UL2 and V2 = R i  U R2 and making four recursive calls, one 

each for edges in EgH^Li, R j ) , i  = 1, 2; j  =  1,2. To make decisions on edges in EgC\{Lh, R j ), 

it recursively calls Sa m p l e A c r o s s  on the graph Gij =  S c h u r A p x (G , (Li, R j)c, e) obtained 

by computing approximate Schur complement on to vertices in (L i,R j)  of vertices outside 

it.

Exact Schur C om plem ent and 0 ( n u) T im e A lgorithm

Here we note how we can get a 0 ( n u ) algorithm. Note tha t this is very similar to the 

algorithm and analysis in [HX16]. If in S c h u r A p x  calls, we set e =  0, i.e., we compute 

exact Schur complements, then we have a 0 ( n u) algorithm. Whenever we make a decision 

on an edge by instantiating SAM PLEEDGE(e), we just have to compute the leverage score 

le of the edge e in a constant sized graph. This can be done in constant time and since we

54



www.manaraa.com

do exact Schur complements, le =  le{G). We can therefore use this to decide if e belongs to 

the tree and then update the graph by either contracting the edge or deleting it depending 

on if it is included or excluded in the tree. In a graph with n\ vertices, it takes 0(r tf)  time 

to compute the Schur complement. Let T(n) be the time taken by S a m p l e W it h in  on a 

graph of size n  and B(n)  be the time taken by S a m p l e A c r o s s  when called on a graph of 

size n. We then have the following recursion

T(n) = 2T(n/2)  +  B(n)  +  0 (n w)

B{n) = 4B(n/2) + 0 ( n UJ).

We therefore have T {n ) =  0 (n w).

A pproxim ate Schur Com plem ent and E xpected  0(m ax {n4/3m 1//2, n 2}) Tim e A l­

gorithm

We speed up 0 ( n u ) algorithm by computing approximate Schur complements faster. Having 

access only to approximate Schur complements, which preserves leverage score only approx­

imately, introduces an issue with computing sampling probability. It is a-priori not clear 

how to make decisions on edges when we preserve leverage scores only approximately during 

the recursive calls. The key idea here is as follows. Suppose we want to decide if a particular 

edge e belongs to the tree. Tracing the recursion tree produced by Algorithm 5, we see that 

we have a sequence of graphs G, G\, G2, •••, Gk all containing the edge e, starting from the 

original input graph G all the way down to Gk which has a constant number of vertices. We 

also have V(G{) C V (G i- 1) for all k > % > 1, all of them being subsets of V{G).

Let n = \V(G)\,m  =  \Eq \ be the number of vertices and edges in the input graph, When 

setting the error parameters, we choose e and some threshold values in ways that depend on 

whether m  < n4/ 3 holds. In the case m  > n4/3, we define e in terms of the level i as

e{i) = 2lt 2ri~1/6m ~ 1̂  log-2 n. (4.1)

55



www.manaraa.com

In the case m  < n4/3, we-define e in terms of the level i as

e(i) — 2 '̂/2n _1/,2 log-2 n. (4.2)

The threshold value is t\  is such that 22tl —

Our e(-) function will ensures for all i, le(G) G [(1 — €i)le(Gi), ( 1 +  £i)le(Gi)\ for an 

appropriate e*. We sample a uniform random number r G [0,1], and initially compute le(Gk)- 

If r lies outside the interval [(1 — ei)le(Gk), (1 +  €i)le(Gk)], then we can make a decision on 

the edge e. Otherwise, we estimate le(G) to a higher accuracy by computing le(G k- 1 ). We 

continue this way, and if r  lies inside the interval [(1 — ei)le(Gi), (1 +  Ci)le(Gi)] for every i, 

then we compute le(G) in the input graph G. In the next section we describe S a m p l e E d g e  

in more detail.

At this point, we find it im portant to mention that the spectral error guarantees from 

the S c h u r A p x  subroutine only hold with probability > 1 — 0(6).  The explanation of the 

S a m p l e E d g e  subroutine above relied on these spectral guarantees, and the error in our 

algorithm for generating random spanning trees will be entirely due to situations in which 

the sparsification routine does not give a spectrally similar Schur complement. For the time 

being we will work under the following assumption and later use the fact that it is true 

w.h.p. to bound the error of our algorithm.

A ssum ption 4.1.1. Every call to S c h u r A p x  with error parameter e always computes an 

e-approximate Schur Complement.

Sam pling Scheme: Sa m p l eE dg e

In  th is  sec tio n  we d esc rib e  th e  ro u tin e  SAMPLEEDGE(e) for a n  edge e G G in  th e  in p u t 

g ra p h . B y  keep ing  tr a c k  of th e  recu rs io n  tre e , we have Go, G \ , ..., Gk a n d  e G G\ for all i.

(i)Lem m a 4.1.2. For graph G and Gi, the respective conditional leverage scores le and re for  

edge e are such that le G [(1 — 2e(i) log n)le \  (1 +  2e(i) logn)4^]

This will now allow us to set =  2e(i) logn. We will delay the proof of Lemma 4.1.2 

until later in this section in favor of first giving the sampling procedure. The sampling

56



www.manaraa.com

A lgorithm  5: GenerateSpanningT ree(G =  (Eg, V))  : Recurse using Schur Com­
plement

Input: Graph G. Let Eq , a global variable, denote the edges in the original (input) 
graph G.

Output: Et is the set of edges in the sampled tree.
1 Et <- Sam pleW ithin(G )
2 return Et

3 Procedure SampleW ithin(G)
4 Set E t  {}
5 if  \V\ =  1 then
6 | return  
T else
8 Divide V  into equal sets V  = V\ U V^-
9 for % =  1, 2 do

10 Compute Gi =  SchurApx(G , Vi, e(level)) (see Equations (4.2) and (4.1))
11 Et ^  Et U S a m p le W ith in ^ )
12 Update G by deleting edges mG(Vj)C\ Ej. and contracting edges in 

G(Vi) D E t-  (Note the convention Ej- := E q \ E t  )

13 Et 4— Et U Sam pleA cross(G , (VR V2))
14 return Et

15 Procedure Sam pleA cross(G , (L, R)) if  \L\ =  |i?| =  1 then
16 Et =  S a m p le E d g e ( ( 5 ,  (L, R) n  E G)
17  return Et

18 Divide L, R  into two equal sized sets: L  =  L\  U L 2 , R  =  R \  U R 2.
19 for i =  1, 2 do
20

21

22

23

for j  =  1,2 do
Gij S churA px(G , (Li U Rj), e(level)) (see Equations (4.2) and (4.1)) 
E t  <- E t  u  SAMPLEACROSS(Gij, (Li, Rj))
Update G by contracting edges E t  and deleting edges in Ej, fl (Li, Rj)

24 return Et

57



www.manaraa.com

procedure is as follows. We generate a uniform random number in r  E [0,1]. We want 

to sample edge e if r < le(G). Instead, we use le(Gk) as a proxy. Note that using fast 

Laplacian solvers, we can in 0(no. of edges) time compute leverage score of an edge upto a 

factor of 1 +  l/poly(n). Since le(G) G [(1 — tk)le(Gk), (1 +  €k)le(Gk)], we include the edge 

in the tree if r < (1 — €k)le{Gk), otherwise if r  > (1 +  €k)le(Gk), we don’t include it in the 

tree. If r  G [(1 — ek)le(Gk), (1 +  ^k)h{Gk)], which happens with probability 2ekle(Gk), we 

get a better estimate of le(G) by computing le(G k- 1 ). We can make a decision as long as 

r  £ [(1 — €k-i)le(Gk-i), (1 +  ek- i ) l e(Gk-i) \ ,  otherwise, we consider the bigger graph Gfc_2. 

In general, if r £ [(1 — ei)le{Gi), (1 +  €i)le(Gi)], then we can make a decision on e, otherwise 

we get a better approximation of le(G) by computing le(G i- 1 ). If we can’t make a decision 

in any of the k steps, which happens if r G [(1 — €i)le(Gi), (1 +  €i)le(Gi)] for all i, then we 

compute the leverage score of e in G updated with edge deletions and contractions resulting 

from decisions made on all the edges that were considered before e.

Note that when we fail to get a good estimate at level i for some % > t\ , we always 

compute the next estimate with respect to the original graph.

Finally, note tha t in the final step, we can compute le{G) up to an approximation factor 

of 1 +  p in 0 ( m log 1 /  p). We can therefore start with 5q = 1/n  and if r  G [(1 — p)le(G), (1 +  

p)le(G)\, we set p =  po/2 and repeat. This terminates in 0 (m )  expected (over randomness 

in r) time.

For our algorithm, assume that we have an efficient data structure tha t gives access to 

each graph Go, ...Gk in which e appears.

P roof o f Lem m a 4.1.2

This edge sampling scheme relies upon the error in the leverage score estimates remaining 

small as we work our way down the subgraphs and remaining small when we contract and 

delete edges. Theorem 1.2.5 implies leverage score estimates will have small error between 

levels, so we will only have compounding of small errors. However, it does not imply that 

these errors remain small after edge contractions and deletions, which becomes necessary to 

prove in the following lemma.

58



www.manaraa.com

A lgorithm  6: SAM PLEEDGE(e) : S am p le  a n  edge u s in g  co n d itio n a l leverage score 

Input: A n edge e a n d  access to  g ra p h s  G o ,  . . . G k  in  w hich  e a p p e a rs  
Output: R e tu rn s  {e} if edge belongs to  th e  tree , a n d  {} if it  d o e sn ’t

1 Generate a uniform random number r  in [0,1]
2 l e < -  ESTIMATELEVERAGEScORE(e)
3 if r < le then
4  | return { e }

5 else
6 [_ return {}

7 Procedure ESTlM ATELEVERAGEScORE(e) C o m p u te  to  e rro r  1 /n

8 if  lsGoOD(Zefc\  e) then
9 return

io for i =  t\  to log n  do
n
12

13

Compute I, an estimate for with error 1 /n  
if  isGood(7, e(i)) then  

return I

14 for % =  0 to oo do
(0)15

16 
17

Compute I, an estimate for le with error 2~ln 
if  isGood(Z, 2~^n) then  

return I

18 Procedure lsGoOD(Ze, e) if r  < (1 — e)le or r > (1 +  e)le then
19 L return True
20 return False

59



www.manaraa.com

L em m a 4.1.3. Given a graph G = (V, E), vertex partition V\, V2, and edges e G Er\(V\, Vf), 

then

S c h u r A p x (G , Vi,e)/e  « £ Sc[G/e]F i, S c h u r A p x (G , Vi,e) \  e Sc[G \  e]Vl

Proof. S c h u r A p x (G , V \ , e) je  « e Sc[G]y /e  because spectral approximations are main­

tained under contractions. Furthermore, S c h u r A p x (G , V\, e) =  Uvi +  Sy2 where Uvi 

is the Laplacian of the edges in E  n  (Vi, Vi). Similarly, write Sc[G]y =  Uvi +  Sy2, and 

because Sy2 Sy2 then Uvi \  e +  Sy2 ~ e Uvi \  e +  Sy2. Combining these facts with 

Fact 2.4.8 gives the desired result. □

Proof, (of Lemma 4.1.2)

By construction, e(i) <  e(k) for every i < k. Iteratively applying Theorem 1.2.5 and 

Lemma 4.1.3, gives le G [e~ê klik\ e ê klik ]̂, and using e(k) <  1 /log2n for all k, and 

k < log n finishes the proof

□

C o rrec tn ess

Under Assumption 4.1.1, we were able to prove Lemma 4.1.2. This, in turn, implies the 

correctness of our algorithm, which is to say tha t it generates a tree from a ru-uniform dis­

tribution on trees. We now remove Assumption 4.1.1, and prove the approximate correctness 

of our algorithm, and the first part of Theorem 1.2.6.

T h eo re m  1.2.6 (Sampling Random Spanning Trees). For any 0 < 6 < 1, the rou­

tine G e n e r a t e S p a n n in g T r e e  (Algorithm 5) outputs a random spanning tree from 

the w-uniform distribution with probability at least 1 — 5 and takes expected time 

0(m ax {n4/3?-™1/2, n 2} log4(1 /<5)).

Proof. Each subgraph makes at most 6 calls to S c h u r A p x , and there are logn recur­

sive levels, so 0 (n 3) total calls are made to S c h u r A p x . Setting 6' =  q ^ s j  for each 

call to S c h u r A p x , Assumption 4.1.1 holds with probability (1 — 5')°^n3  ̂ = 1 — 5, and

60



www.manaraa.com

l°g4 ^ f?_.A  )  ̂ _  OQog4 (1/#))- Therefore, our algorithm will only fail to generate a random 

tree from the ly-uniform distribution on trees with probability at most S.

□

R untim e A nalysis

We will now analyze the runtime of the algorithm. Let T(n) be the time taken by 

S a m p l e W it h in  on input a graph G with n vertices and let B (n ) be the time taken by

S a m p l e A c r o ss  on a graph with n  vertices. We recall tha t the recursive structure then

gives T{ri) = 2T (n /2 ) +  4R (n/2) and B (n /2 )  = 4R(n/4). To compute the total runtime, 

we separate out the work done in the leaves of the recursion tree from the rest. Note that 

S a m p l e E d g e  is invoked only on the leaves.

First we bound the total number of nodes of the recursion tree as a function of the depth 

in the tree.

Lem m a 4.1.4. Level i of the recursion tree has at most 4*+1 — 2* nodes, the number of

vertices in the graphs at each of the nodes is at most n/2*.

Proof It is clear tha t the size of the graph at a node at depth i is at most n / 2*. We will 

bound the number of nodes by induction. There are two types of nodes in the recursion tree 

due to the recurrence having two kinds of branches corresponding to T(n), B{n). We will call 

the nodes corresponding to T(n)  as the first type and it is clear from the recurrence relation 

that there are 2% such nodes. Let us call the other type of nodes the second type, and it is 

clear tha t every node (both first and second type) at depth i — 1 branches into four type two 

nodes. Therefore, if a* is the total number of nodes at level i, then a* =  'fcLi-i +  2*. We will 

now prove by induction tha t ai < 4*+1 — 2*. Given ao =  1, the base case follows trivially. 

Suppose it is true for i — 1, then we have ai = 4aj_i +  2Z < 4(4* — 2*_1) +  2* =  4*+1 — 2*, 

proving the lemma.

□

Now we will compute the total work done at all levels other than the leaves. We recall 

the error parameter in S c h u r A p x  calls is a function of the depth in the tree: In the case

61



www.manaraa.com

m  > n4/3, we define e in terms of the level i as

e(i) =  2^2n _1/6m -1 /4 log-2 n.

In the case m  <  n4/3, we define e in terms of the level i as

e(i) = 2z/2n -1/2 log-2 n.

Note tha t when m > n 4/3, we have n -1/6m -1/4 <  n -1/ 2. Further, the maximum value of i 

is logn so 22/2 =  n 1/ 2. This means we always have e(i) <  2z/ 2n -1 / 2 log-2 n < log-2 n.

The threshold value £i is such that 22tl =  ^ .

Lem m a 4.1.5. The total work done at all levels of the recursion tree excluding the leaves 

is bounded by 0 (m ax { n ^ ^ m 1/ 2, n 2} log4(l/£ )).

Proof. From Theorem 1.2.5 the work done in a node at depth i is 

O (((n /21)2 +  n2~le{i)~2) log4(l/£ )) . The log4 (l/$ ) factor is left out from the re­

maining analysis for simplicity. By Lemma 4.1.4, the total work done at depth i is 

O (n2 +  n2le(i)~2) . Finally, bound for the total running time across all levels follows from

logn

n 2 +  2l 77 2 =  O (ji2logn  +  nm ax | n ly/3m 1//2, n |^  .
i=o

□

We will now analyze the total work done at the leaves of the recursion tree. We first 

state a lemma which gives the probability tha t approximate leverage score of an edge can 

be used to decide if the edge belongs to the tree.

Corollary 4.1.6. I f  r is drawn uniformly randomly from [0,1], then the probability that 

r 6 [1 — ele log2 n, 1 +  ele log2 n] is 0{ele) w.h.p.

Proof. The exact probability is 2ile log2 n, and from Lemma 5.8, we know le < 2le w.h.p.

□

We now consider the expected work done at a single leaf of the recursion tree.

62



www.manaraa.com

L em m a 4.1.7. Let le be the leverage score of an edge e in the G which is obtained by 

updating the input graph based on the decisions made on all the edges considered before e. 

The routine S a m p l e E d g e  takes

Proof. It takes 0(1) time to compute the leverage score at a leaf of the recursion tree. The 

routine S a m p l e E d g e  successively climbs up the recursion tree to compute the leverage 

score if the leverage score estimation at the current level is not sufficient. The probability 

that the outcome of r is such tha t we cannot make a decision at level i is 0{e{i)le).

The time required to compute the leverage score of edge e in the graph at a node at 

depth i in the recursion tree is 0 ((n /2*)2).

Finally, with probability 0{e{ti)le) we need to compute the leverage score in the input 

graph and the expected running time is 0 (m ). Therefore, when m  > n4/3 and e(i) = 

2z/2n -1//6ra-1 /4 log-2 n, the total expected running time is

We now want to give the runtime cost over all edges. Let us label the edges e i , ..., em in

0 ( 1  +  lem n
i= t \

When m < n4/3 and e(i) = 2l!2n  1/2 log 2 n, the total expected running time is

=  0 (1  +  len ).

Note tha t n 1/3?™1/2 > n  if and only if m  > n4/3, so we can summarize this as the expected 

running time being bounded by O (l +  le max {n, n 1/3?™1/2}).

□

63



www.manaraa.com

the order in which the decisions are made on them. In the following, when we talk about 

leverage score lBi of an edge e*, we mean the leverage score of the edge e* in the graph 

obtained by updating G based on the decisions made on ei, . . . , e i _ i .

Lem m a 4.1.8. Letei be the first edge sampled to be in the tree, a n d X  = Ze i + Z e 2 + Z e3 +  . . . + Z e . 

be a random variable. Then,

Pr(X  > C) < e~c .

Proof. Let pj = lej, we have 0 <  pj < 1. If YljP j  ^  O, then the probability that the edges 

e i ,  . . . , e j _ i is deleted is

□

We thus have E (X )  = 0(1), and also, with probability at least 1 — l/poly(n) we have 

X  =  O(logn). Applying this iteratively until n — 1 edges are sampled to be in the tree, we 

have that the expected sum of conditional leverage scores is 0 (n ), and is O (nlogn) with 

probability 1 — l/poly(n).

Corollary 4.1.9. The total expected work done over all the leaves of the recursion tree is 

0 (m ax {n4/ 3??!1/ 2, n 2}).

Proof. This immediately follows from Lemma 4.1.7 by plugging in Yhe h  = O (nlogn), which 

holds with probability at least 1 — l/poly(n), and observing tha t the work done at the leaves 

is poly(n) in the worst case.

□

64



www.manaraa.com

Chapter 5

Approximate Gaussian Elimination 

for Directed Laplacians

In this section, we will give an overview of the key components of our algorithm for LU 

factorization and show how to use an LU factorization it generates to solve Eulerian Lapla­

cians. We will also give proofs of our two top level statements on Eulerian Laplacians 

(Theorem 1.2.3 and Corollary 1.2.4) assuming lower level statements proven in this section 

and later in the chapter.

We will assume tha t the input matrix, L, is a strongly connected Eulerian Laplacian. 

The main algorithm for LU factorization, Algorithm 8, has pmax phases or iterations. The 

routine for a single phase, given in Algorithm 7, iteratively eliminates vertices belonging to 

a random set selected by Algorithm 9. In every iteration within any phase of the algorithm, 

a vertex, say v, is eliminated. Let Xv ^  ^ e  vector whose u’th  coordinate is set to one

and all others to be zero, and h(U)l)) — X v ~  Xu- We write

S t [ L ] , u  ' y   ̂ W ( v , u ) b ( l L , v ) X v  “b  y  '  W ( u , v ) X v ^ ( u , v ) l  

(v , u ) E E  (u,v)€.E

to denote the directed star-graph at vertex v in L. We can write the Schur complement 

obtained by eliminating vertex v as

SC [% U„} = L -  St [L]„ + St [L]„ -  :).

65



www.manaraa.com

Since St [L]v — j^^yL (:, u )L (u ,:) is in general a dense matrix, we use the routine 

SingleV ertexE lim(-), given in Subsection 5.1.2, to sparsify it at every iteration. We make 

0(1) calls to SingleV ertexE lim(-) at every elimination step, and this results in a slow in­

crease in the the total number of edges at every iteration. We will use SparsifyE ulerian(-) 

from [CKP+ 16b] to sparsify the current graph every once in a while based on the total edge 

count. This is a routine to sparsify any Eulerian graph, and can be found in [CKP+ 16b]. 

Recalling the notion of asymmetric spectral approximation from Definition 2.1.3, the guar­

antees stated in Theorem 3.16 of [CKP+ 16b] can be stated as follows:

T h eo re m  5.0.1. For Eulerian Laplacian L G Rnxn and e, 8, G (0,1) with probability at least 

1 —p the routine SparsifyE ulerian(L, 8, e) computes in 0(nnz(L) +  ne~2 log(l/<5)) time 

an Eulerian Laplacian L G Mnxn such that

1. L is an e-asymmetric spectral approximation of L.

2. L has 0 (ne~ 2 log(l/£)) non-zeros.

3. the weighted in and out degrees of the graphs associated with L and L are identical.

A key thing to note is that the graph we maintain is always Eulerian. Let the vertices be 

labeled so that in phase p  of the algorithm, we eliminate vertices ip . . .  ip+1 — 1. This means 

tha t at the start of phase p , we have a graph on n  — ip +  1 vertices. We will then index 

the elimination steps using the superscript to denote the state of things ju s t  befo re  

we make the «th elimination step. denotes the matrix that we work on before the zth 

elimination step. We define as an n  x n  matrix, but it is always non-zero only on entries 

tha t correspond to pairs variables neither of which have been eliminated. denotes the 

original matrix perturbed by the perturbations introduced by SingleV ertexE lim(-) and 

SparsifyE ulerian(-). We can express it as:

L (i+i) 4|f L «  +  f  s (m ) _  S c  [ L ( 0 l  ^

The quantity is formally defined in Algorithm 8, along with an index set ij (some­

times denoted ip) used to index into it for j  =  0 . .  .pmax — 1, where pmax Is the total number 

of phases.

66



www.manaraa.com

A lg o rith m  7: S in g le P h a se (L , 5, e)
Input: an Eulerian Laplacian L on vertex set V, and an error parameter e 
Output: Set of vertices eliminated, F , an Eulerian Laplacian on V  \  F , 

matrices U ^F\\  C ^F^ with non-zeros only in the rows/columns 
corresponding to F  respectively tha t are upper/lower triangle upon 
rearranging the vertices in F , and L «  S ^F^ +

1 P  <— ©(log2(l/<5)/e2)
2 P 4— © 0 / P )
3 Compute a sparsifier of L, •<— S p a r s i fy E u le r ia n (L ,  6/P,  P)
4 T  <— 0 (n e -6 log5(1/5)) (the upper bound on nnz(S^0 )̂ from Theorem 5.0.1)
5 Pick a 0.1-RCDD subset (Algorithm 9) of vertices F ^  from
6 Initialize t l^° \  C ^  <— 0
7 Set kmax <- L|A°)|/2j
8 for k = 1 . . .  fcmax do
9 Among vertices in with degree at most twice the average, pick a random

Vk-
F W  «- F ^ - 1) \  {vk}
Set <- S(k~l \ v k ,vk)
Update the factorization, set 1 4 ^  to with row vk replaced by

_J^.S(fe-1)(t;fc,:) and to with column vk replaced by :).
Set l^k\  r ^  to length n  vectors containing the the off-diagonal non-zeros in the 
column and row of vk in respectively.

Initialize the first matrix of the inner loop to be the exact Schur complement of 
pivoting out vk from S(fc,°) <— S^k~ ^  — l ^ r ^ T

for f = l . . . P d o
S (k,t) jg(M-i) _  ^  ^ S in g le V e r te x E l im  (d,(k\  l^k\  >

(see Algorithm 10) 
if  nnz (S(^T)) > 2T  then  
| <- S p a r s i f y E u le r i a n ( S ^ )P\  8/P, P)

Y s (fc) <- S {KP)

2 1  Return S^fcmax\  £(fcmax)̂  ancj

10

n
12

13

14

15

16

17

18

19

20

67



www.manaraa.com

A lg o rith m  8: E ulerianLU(L, 6, e)
Input: an Eulerian Laplacian L and error parameter 0 < e < 1/2
Output: lower and upper triangular matrices £,14  whose product approximates L

1 L «- S p a r s i fy E u le r ia n (L ,  5/2, 0 (e / lo g n ))
2 S(°) L and set £,14  to be empty matrices.
3 i [0], j  <— 0
4 w hile ij < n (i.e., fo r p max — O(logn) iterations)  do 

(T, £!, U', kmax) <- S in g le P h a s e  , 0 (e /  log n ))

6 ij 4— i j -1 +  kmax, T
7 Insert the nonzero vectors from the partial LU factorization jC' ,U '  into their 

corresponding locations £  and 14, respectively.
3 <- 3 +  1

Using a matrix martingale concentration inequality, we can prove the following statement 

about the distortions being bounded in each phase.

T h e o re m  5.0.2. Given an n x n  Eulerian matrix L with m  non-zeros and a 0.1 -RCDD sub­

set J , and an error parameter e < 1/2, and probability bound 5 < 1/n, S in g le P h a se (L , 5, e) 

(Algorithm 1) creates with probability 1 — 0(6) matrices S ,£',14', where S is an Eulerian 

Laplacian, and £ ’ ,14* are upper and lower triangular respectively. The algorithm also finds 

a subset J  such that

S =  Sc
V \ J

for the matrix L =  S +  £ rl4' such that

U f l / 2 L - L  Ur t  1 / 2 < e (5.1)

and \J\ > \ \J \ .

Furthermore, the number of non-zeroes in S, £ ',  andlAf will be at most 0 (n e -6 log5(l/d )) 

and the runtime will be at most 0 ( m  +  ne~8 log7(1 /6)).

This Theorem is proven in Section 5.1.

This means that with high probability we can bound the distortion taking place within 

each phase by:

V n/ . \  (L (̂  -  L (̂ +l)>) U fl/ 2s sbpJ \  /  sbpl < 0pe,

68



www.manaraa.com

while we also have (n — ip+i) < 0.99(n — ip)

We will now define a positive semi-definite matrix which we use for measuring the accu­

mulation of errors:

F Wd= E ^ U s(ip),
p'<p

and for convenience, we will let F  be

F d= F( ! w >= E  ^ U s(‘p)' <5'2)
Ô P̂ Pmax

We will set 6V = — so tha t 0V = 1. We will bound the final error in terms of F
r  Pmax Z—fp—U V

as stated in the following lemma.

Lem m a 5.0.3. With high probability the final accumulation of errors satisfies

F tl/2 (L -  Lw ) F tl/2 < e
2

for every i = 0 . . .  n.

Proof of Lemma 5.0.3 is deferred to Section A.2. This alone will not be sufficient for 

using L̂ n) as a preconditioner. Therefore, we show the following additional guarantee on F.

Lem m a 5.0.4. With high probability, the final norm that we use, F, satisfies

L(n)TF fL(n) y  I /O  (log2 n) • F.

Proof is deferred to Section A.2. Lemma 5.0.4 and the ability to solve linear systems in 

L(n) enable us to solve linear systems in L. To formalize this, we need to draw upon the 

definition of approximate pseudoinverses from [CKP+16b].

D efinition 5.0.5 (Approximate Pseudoinverse). Matrix Z is an e-approximate pseu­

doinverse of matrix M  with respect to a symmetric positive semidefinite matrix F, if

69



www.manaraa.com

ker(F) C ker(M) ker(M T) =  ker(Z) =  ker(ZT), and

The reason why approximate pseudoinverses are useful is tha t if one preconditions with 

a solver for an approximate pseudoinverse, one can quickly solve the original system.

L em m a 5.0.6 (Preconditioned Richardson, [CKP+ 16b] Lemma 4.2, pg. 30). Let b G 

Mn and M , Z ,F  G Mnxn such that F  is symmetric positive semidefinite, ker(F) C 

ker(M) =  ker(M T) =  ker(Z) =  ker(ZT), and b G im (M ). Then if  one performs 

t > 0 iterative refinement steps with step size rj > 0, one obtains a vector Xt = 

P r e c o n R ic h a r d s o n (M , Z, b,r],t) such that

x t -  M f b <  | |l im(M) -  vZM \\F  11 —- v ■ / 11F-»F

Furthermore, preconditioned Richardson implements a linear operator, in the sense that

Xt = Ztb, for some matrix Z* only depending on Z, M , 77 and t.

We now argue that the properties of the approximate LU factorization produced by 

our algorithm imply that a solver for systems in it is an approximate pseudoinverse of the 

original Laplacian.

L em m a 5.0.7. Suppose we are given matrices L, L and a positive semi-definite matrix F

such that ker(F) C ker(L) =  ker(LT) =  ker(L) =  ker(LT) and

1. FtV2(L - L ) F ^ / 2 < e,
2

2. LTF tL  h  7 F.

Then L^ is an \Je2^ -1 -approximate pseudoinverse for  L w.r.t. the norm F.

Proof Note Iim(L) — n ,  but we will abuse notation and simply write I for matrix. The

1. Note that the ordering of Z and M is crucial: this definition is not equivalent to ||Iimrd — MZHp^p 
being small.

70



www.manaraa.com

condition we need to show
F->-F 

T

< >/e27 1 is equivalent toI - L t L

( i  -  L fL ) ' F  ( i  -  L fL ) ^  e27 -1 F. 

By rearranging a factor of L on the LHS, we get

( i  -  L*l )  T F  ( i  -  L fL ) =  (L  -  l )  T L ’*"TF L t ( l  -  l )

r< 7 - 1  ( lW  -  l ) T F f (L (n) -  L ) ,

where in the last inequality we used L tTFL t ^  7  1FC Condition

11 p t 1/ 2 — L) F ^ 1 / 2 J j 2  < e is equivalent to

(L (n) -  l ) T F f (L (n) -  l )  X e2 F.

Combining inequalities 5.4 and 5.5, we get ^1 — F  ^1 — ^  e2 7 - 1 F.

We would like for the error guarantees of our solver to be in terms of U l - In 

provide such guarantees, we need to relate this matrix to F.

Lem m a 5.0.8.

U L /0(log(n)) ■< F  ■< 0 ( n 2 log5  n) • U l  

Proof. Since F  =  Y .P><V ^ /U S(7 >) and °p' = o(iogn)> we have

F  h  * ' U L.
O(logn)

We have by Lemma 5.0.4 tha t w.h.p.,

F  r< 0(log 2 n) • L ^ L  

d  0(log 4 n) L TF fL 

r< 0(log 5 n) -L TU+L 

■< 0 ( n 2 log5 n) • U l ,

(5.3)

(5.4)

1, i.e.,

(5.5) 

□

order to

71



www.manaraa.com

where we used Lemma A.4.1 and Lemma 5.0.3 for the second step and Lemma 13 from 

[CKP+ 16a] pg. 19 for the last step. □

We have now stated the key theorems and lemmas needed to analyze correctness. W ith 

these tools, we can obtain the main theorem statement about finding sparse LU factorizations 

(Theorem 1.2.3) as follows.

Proof of Theorem 1.2.3. It is clear from the statement of the algorithm and the guarantees 

of Theorem 5.0.2 tha t EuLERlANLU(Algorithm 8) outputs an LU factorization with the 

sparsity claimed and with the claimed bound on running time and error probability. The re­

maining correctness guarantees were proven as Lemma 5.0.8, Lemma 5.0.4, and Lemma 5.0.3, 

respectively. □

We now have all the tools we need to obtain a fast solver for strongly connected Eulerian 

Laplacian systems.

Proof of Corollary 1.2.4■ Suppose we have an Eulerian Laplacian L and find a l /0 ( lo g 2(n))- 

approximate LU factorization in nearly linear time using Theorem 1.2.3 in the sense that 

||F t/2( L - £ L 0 F t /2||2 < I /O  (log2 n). Because it is an LU factorization, we can solve systems 

in it in linear time. By Lemma 5.0.7, such a solver is an 0.1-approximate pseudoinverse of L 

with respect to F, provided we pick an appropriately small constant in the error guarantee we 

invoke our LU factorization algorithm EuLERlANLU(Algorithm 8) with. By Lemma 5.0.6, if 

we precondition the original system with this solver, we can find a solution x  to the original 

system with e/poly(n) error in the sense that ||x — U&||F < poiy(n) • ||L^6||f  in nearly linear 

time. Since F  ~ poiy (n) U l,  this implies | |x  — <  e • ||Lt&||UL. □

5.1 A nalysis o f th e  LU Factorization  A lgorithm

In this section, we prove the guarantees of our LU Factorization Algorithm.

5 .1 .1  F in d in g  an  a -R C D D  B lo ck

First we provide a basic result (an analog of [LPS15]) showing we can find large a-RCDD 

blocks of vertices efficiently.

72



www.manaraa.com

A lg o rith m  9: F indR C D D B lock(G !, a)
Input: a directed graph G and a parameter a
Output: an a-RCDD set of vertices F  of size at least n/16

1

2 w hile |F| <  do
3
4
5
6

.F •<— 0.
Randomly sample k = vertices.
Discard any vertices tha t are not a-RCDD. 
Set F  equal to the resulting set.

Theorem  5.1.1. Given a directed graph G, the function F in d R C D D B l o c k (G, a) (Algo­

rithm 9) outputs an a-RCDD set of vertices of size at least 16(f+a) in time 0 ( m  log(l/5)) 

with probability at least 1 — 0(5).

Proof. This is immediate from Lemma A.3.2 is in the Appendix. □

5 .1 .2  S in g le  V er tex  E lim in a tio n  A lg o r ith m

The algorithm below produces a sparse approximation of the clique created by Gaus­

sian Elimination on an Eulerian directed Laplacian. It can be implemented to run in 

0(deg(v) logdeg(v)) time where deg is the combinatorial degree of the vertex v being elim­

inated. The algorithm has two key features. When including self-loops, it preserves the 

weighted in and out degree of each vertex. This ensures the graph created by replacing 

the clique with the sparse approximation is still Eulerian. Note that we may get self-loops 

which will cancel out and change the degree of vertices, but it won’t change the fact that 

each vertex still has in-degree equal to out-degree.

Lem m a 5.1.2. The matrix A  returned by S in g l e V e r t e x E l im (Z, r) has nnz(A) < nnz(Z)+ 

nnz(r). Also, the algorithm makes < nnz(I) +  nnz(r) recursive calls to itself, and all the 

recursive calls are made to vectors with non-negative entries satisfying 1 T l =  1 T r.

Proof. We prove this by induction on nnz(Z) +  nnz(r). Base case: nnz(Z) +  nnz(r) =  0, then 

l , r  =  0, so A  =  0, and nnz(A) =  0. This proves the base case. For the inductive step, we 

suppose nnz(Z) +  nnz(r) =  k +  1 and that the lemma holds whenever nnz(Z) +  nnz(r) < k. 

W.l.o.g. consider the case of min(I) < m in(r). Note that I — l(i)Xii r  ~  l(i)Xj ^  0, and

73



www.manaraa.com

A lg o rith m  10: S in g leV ertex E lim (Z , r)
Input: Z, r  £ MP s.t. both have non-negative entries and 1TZ =  1 Tr . 
Output: N e l nxn

1 s <— 1 TZ
2 if s = 0 then
3  | return 0
4 else if min(Z) < m in(r) then
5

6 

7

i <— arg min(Z)
Pick index j  <— k with probability r {k ) /s
return l { i ) X i X j  +  S i n g l e V e r t e x E l i m ( Z  -  r  — K t f X j )

8 else
9

10

l i

i <— argm in(r)
Pick index j  k with probability l{k)/s
return r ( i ) x j X j  +  S i n g l e V e r t e x E l i m ( Z  — r( i )xj ,  r  — r(i)xi)

that

nnz(Z -  l(i)Xi) +  nnz(r -  l ( i )x j)  < k

so by the induction hypothesis with A ' =  S in g l e V e r t e x E l im (Z — l(i)Xi> r  ~  K^)Xj) 

have nnz(A ') <  k, and so nnz(A) < k +  1. This proves the lemma by induction. The 

number of recursive calls can be bounded in the same way. □

Lem m a 5.1.3. The matrix A  returned by S in g le V e r t e x E l im ( Z ,  r) has only non-negative 

entries and satisfies A1 =  I, and 1TA =  r T .

Proof. We prove the lemma by induction on nnz(Z) +  nnz(r). It is true in the base case 

nnz(Z) +  nnz(r) =  0, where Z. r  =  0 . so A  =  0, and A1 =  0 =  Z, and 1TA =  0T =  r T.

For the inductive step, we suppose nnz(Z) +  nnz(r) =  k +  1 and that the lemma holds 

whenever nnz(Z) +  nnz(r) < k. W.l.o.g. consider the case of min(Z) < m in(r).

Let A ' =  S in g l e V e r t e x E l im (Z — l ( i )Xi>r  ~  K^)Xj)- By the induction hypothesis,

A1 =  l (i)XiXj  1 +  A 'l  =  l(i)Xi +  I ~  l(i)Xi = l -

and similarly

1TA =  l T l(i )XiXj  +  1TA' =  l{i)xJ + r T -  l ( i )x j  =  r.

74



www.manaraa.com

□

L em m a 5.1.4. Given Z, r  € Mn s.t. both have non-negative entries and 1TZ =  1 Tr  =  s, let 

A  =  S in g le V e r t e x E l im ( Z ,  r ) .  Then E [A] =  l r T /s.

Proof. We prove the lemma by induction on nnz(Z) +  nnz(r). It is true in the base case 

nnz(Z) +  nnz(r) =  0, where Z, r  =  0, so A — 0, so E [A] =  0. For the inductive step, we 

suppose nnz(Z) +  nnz(r) =  k +  1 and tha t the lemma holds whenever nnz(Z) +  nnz(r) < k. 

W.l.o.g. consider the case of min(Z) < m in(r).

Then

E [A ] =  j  +  ~  l(S)Xi ){ r  -  l { i )Xj)T ĵ

=  E -  l ^ r T  -  ?  (l -  w x j r w x j
j

l- r X irT  + - i( i)X i)rT  ■  l- T 7 ^ W ) {l - l ( i )Xi ) rT

T f^- 1 1 A , |„ T  1 ( 1 KO
l{i)Xir ----------------- “!------------- T7E +  l r   r r r  1 —' s s — l(l) s s — l{l) J s — l{l) \  s

= l r T Js

□

A crucial matrix used in analyzing the elimination of a single vertex is the Schur com­

plement of of the star incident on the eliminated vertex in the undirectification of the whole 

matrix.

D efin ition  5.1.5. Given an Eulerian Laplacian L and a vertex v, let U iocai =  CLfUiJ.y 

(see Equation (2 .4)/

Note that

U local =< ST[UL]V .

And hence for a random choice of vertex v in a graph with n remaining vertices

E„ [Uiocai] X ^ U L (5.6)

75



www.manaraa.com

L em m a 5.1.6 (Single Vertex Elimination Routine). There is a routine S in g l e V e r t e x E- 

LIM that takes the in and out adjacency list vectors I and r  of a vertex u in an Eulerian 

Laplacian with d non-zeros, and produces a matrix A  with at most d non-zeros such that the 

error matrix

X  =  ~ ^ l r T -  A 
r  1 1

satisfies

1. X I  =  0, X T1 -  0, and

2. E [X] =.0, and

3. For the local undirectification, U iocai as given in Definition 5.1.5,

T y t l / 2  - y j x t  1 / 2  
u  loc a l^^  local < 4.

2

Proof. We already have Parts 1 and 1 from Lemma 5.1.3 and Lemma 5.1.4.

For part 3, we note tha t by A  (by Lemma 5.1.3) has the sum of the absolute value of its 

entries in the ith  row and ith  column of at most l{i) -f r{i).  This similarly applies to the 

the expectation Thus, the sums for the error matrix X  are at most double this:

2 (l{i) + r(i)).

Now, we define a diagonal matrix 'Diocah whose sth diagonal entry is

safe Because the sums of the absolute values of the Rh row and column are at most

4(D iocal)u, we have

Id ^ x d ^ I I  ^  4-

Now> U L»! -i D ioLi> so Wv \ l ^ p li l ‘L i h  <  1 and hence

11 j  j '1/ 2 t 1/ 211 — ii "n1/ 2 v r > ~ 1/2x r ) -1 /2 VTTt l /2 n 1/2 Wn < 4II ^  local local II — II V U local^local local ^^local )\^local*-*local) II —

□

76



www.manaraa.com

5 .1 .3  B o u n d s  on  Schur C o m p lem en ts

In this section we bound the blowup of the Schur complements as we pivot away a-RCDD 

subsets of vertices. This is useful for bounding the variance operators after repeated single 

step eliminations as in Section 5.1. The main result tha t we’ll show is:

Lem m a 5.1.7. Suppose that L =  D — A T E Rnxn is an Eulerian Laplacian, let U  U l  

and let F ,C  C [n] be a partition of  [n] such that U pF ^ D f f  then Ug<-{L]F d  (1 +  2a)U .

Corollary 5.1.8. Suppose that L =  D — A T E Mnxn is an Eulerian Laplacian, and F  C [n] 

is an a-RCDD subset. Then U ScfL]F d  (3 +  q )U l-

Proof. Consider an Eulerian Laplacian L =  D — A T E Rnxn, and an a-RCDD subset 

F  C [n] of L. Let U  =f U l  =  D - U a ,  then the a-RCDD condition implies tha t yppDFF — 

( U a ) f f  cl 0 ,  since it is SDD. Hence U f f  — j+^E)pp  +  pppDFF — ( U a ) f f  d  x+^B. The 

conclusion now follows from Lemma 5.1.7. □

Bounding G eneral Schur C om plem ents

We start with a simple lemma tha t upper bounds the Schur complement of a general matrix 

spectrally via its symmetrization.

Lem m a 5.1.9. I f  N  E Mnxn satisfies U  =f U n  >r 0 and F ,C  C [n] is a partition of [n] 

where U f f  >- 0 and N’ff  is invertible and

M  =f
[N F ^ ] T U jpjp N jPJ? 0  f c

0  CF  0  CC
d  a [N t]TU N t

then U Sc(n]f  d  (1 +  «)U .

Proof. Let z E Rn be arbitrary and let x , y  E Mn be defined so tha t x q  =  Vc  — z Ci
def

x f =̂= — and y F = —U p ^ U f c z c - Note that- l

Lee =
N  f f  N f c  

N  c f  N c c

' - N ^ N f c z c  '

/

Of

y Sc[N]f  zq  j

77



www.manaraa.com

and therefore x Th x  =  z TSc[N]F z.  Furthermore, note that

z TXJz = z JtU f f z f  +  Zz c U c f z f  +  z p fU c c z c

and since XJpp ^  0 we have that z TXJz is minimized over z p  when z p  = —^ Jpp^FCZc  

and thus y TXJy < z TUz .  Furthermore, note that

y F - x p  = N ^ [N j/] i?

and consequently as x c  = y c  we have that

II* -  y \ \ \ j  =  ( x f  -  y f f ( x f  -  y F ) =  II[n 2/]fIIn-iuf f n - i  •FF  ̂̂  FF

—  I l N y l l L  ^  a  11^2 /II[isrt]T u N t  ^  a  II2/l lu  •

Further, using the U-orthogonality between y  and x  — y  (as x  — y  is supported on F  and 

U y  is 0 on F),

II * Hu =  II2/ llu +  11* -  2/llu < (1 +  «) 112/11 u  

and as ||cc||u — 2 :TSc[N]i? 2 : =  ^ U g q N ] ^  and ||2/llu — llz llu the resuh  follows. □

Schur C om plem ents of Eulerian Laplacians

Here we show how to apply the Schur complement bounds to Schur complements of Eulerian 

Laplacians.

We begin with a fairly self-contained lemma about Eulerian Laplacians.

Lem m a 5.1.10. Suppose that L =  D — A T G MnXn is an Eulerian Laplacian associated 

with directed graph G = (V, E , w) and let U  =  |(L  -f LT). Then LTD -1 L ^ 2 • U.

Proof. Let x  G Mn be arbitrary and recall tha t

[Lx]i = ^  Wij(x{i) -  x( j ) )  and D& =  ^  wij .
(i,j)£E (i,j)eE

78



www.manaraa.com

Furthermore, by Cauchy Schwarz we have that

II
<M

-«

• ?s> 

■<s>

WI

) ~  * ( j ) )

2

<
W ii U ' i j W i )  -  X U ) ) 2

.( i , j ) eE . (h j ) eE _(iJ)eE

Consequently,

x L t D 1Lcc =  ^  ^ 2  Wij(x(i) — x ( j ) )2 =  2 • x T\J x
i£[n] ™ ie[n] ( i , j ) eE

□

Using this we prove the main bound.

Proof of Lemma 5.1.7. First note that ~Lf f  and U f f  must be RCDD as L is Eulerian, and 

since U f f  cl 2&FF  it is the case tha t Upi? is invertible and so is hpF-  Consequently, as 

U f f  ^  from our general bounds on harmonic symmetrizations we have that

[ L ^ ] TU i^ p [L ^ ]  ^  U pp.  Furthermore, as XJf f  h  q ^ F F  we have that ^  otDjrp  and 

therefore that

T T - 1  r» _ t^ - 1 r.

^  q:D_ 1 ^  a[L]T [Lt]TD ' 1[Lt][L].

As [Li]TD _1[Li] ^  2 • U  by Lemma 5.1.10 the result then follows from Lemma 5.1.9. □

S chur C om plem en ts  a fte r  E rro r

Here, we show that symmetrized Schur complements are robust to small changes to the 

original matrix. This will be useful for analyzing the single vertex pivoting algorithm, which 

accumulates error as it pivots.

def

[L F ^ ]T U i? ^ L F ^  0  F c
■<

o  FC

o CF  0 c c 0  CF 0  c c

L em m a 5.1.11. I f  N  G Mnxn satisfies U  =  U n  >z 0 and F ,C  C [n] is a partition of [n]

vertible, and N  and N  have the sc 

U '1/2(N -  N )U tV || <  e, then U Be(S] d  V s4N]p.

where XJpp 0 and N f f  is invertible, and N  and N  have the same kernel and cokernel as
2

u  .

79



www.manaraa.com

Proof. As in the proof of Lemma 5.1.9, given any vector 2  we define x  and x  such that
dfif 1 d.6f ^  1

X C  = x c  = Z C , X F  = - N p FN FCz c ,  X F  = - N p p N p c z c -  We then have, again,

z TU scpi'i-Z =  x TJJx and z TU  

Now,

Sc[N]f * =  *  miU ^  ^Sc[N]
 rn _

z  = x  XJx.

X F  — X F  — —

=  —N ^ [(N  — N)s]j?.

By the guarantee of N , we have

( N - N ) ® <
ut  1 — e

<

( N - N ) ®
ut

1 — e
\x\ u •

This gives

\xF -  ®f | Iu = N p p (N  -  N )*]f
u

<

<

(N -  N)® ut

1 — e * iu

Then we can write



www.manaraa.com

5 .1 .4  S in g le  P h a se  A n a ly s is

We need to show that in S i n g l e P h a s e  (Algorithm 7), we do not do an (very expensive) 

full sparsification of the entire graph too many times. Second, we our runtime will have a 

term tha t is nearly linear in the sum of the degrees of the vertices we eliminate. To say that 

these aren’t too big, we need to bound how much we can blow up the average degree of the 

graph and number of edges in it after doing one elimination. The following lemmas help us 

bound the running time of S i n g l e P h a s e , and the number of calls to S p a r s i f y E u l e r i a n  

made inside it.

Lem m a 5.1.12. Suppose L is an Eulerian Laplacian on n vertices with m  non-zeros. In  

S i n g l e P h a s e ( L ,  (5, e) ,  for all k, nnz(S(fc+1)) < ^1 +  O nnz(S(fc))

Proof. This is immediate from the fact that the algorithm only selects vertices to eliminate 

of at most twice the average degree and that when a vertex is eliminated, O (degree) edges 

are added to the graph from each of the P  = 0 (e ~ 2  log2  (1/(5)) calls to S i n g l e V e r t e x E l im  

(Algorithm 10). □

Lem m a 5.1.13. Suppose L is an Eulerian Laplacian on n vertices with m  non­

zeros. In the ior-loop of S i n g l e P h a s e  (Algorithm 7), S p a r s i f y E u l e r i a n ( - )  is called 

0 ( P ) =  0 (e - 2  log2 (1/(5)) times, each time after the first on an Eulerian Laplacian with 

0(ne~ 6 log5(l/(5)) edges. The total running time for a call to S i n g l e P h a s e ( L ,  <5, e) is 

0 {m  +  ne~8 log7(l/(5)).

Proof. The first of the two calls to produces an Eulerian Laplacian S^k\  s.t. n n z (S ^ )  <

T. After t eliminations, we have an Eulerian Laplacian S^k+t,p  ̂ s.t. n.nz(S^k+t,p )̂ > 2T. 

Meanwhile, by Lemma 5.1.12, and since we eliminate at most n f 2  vertices the number of 

non-zeros nnz(S^k+t,p )̂ is upper bounded by

nnz ( S « )  n ( i + ° ( ^ r = f ^ ) ) ^ nnz(s W ) n (  l  +  O ^ —^  < n n z (S ^ )  exp (0 (P /n )t)

This means tha t exp (0 (P ) t)T  > 2 T, so t > Q (n/P ). Since we perform t eliminations 

before each next call to S p a r s i f y E u l e r i a n (-), and the total number of eliminations in a 

phase is at most n / 2 , the number of sparsifications is upper bounded by 0 ( n / t ) = O(P).

81



www.manaraa.com

The running time for all the sparsification calls combined is 0 (m  +  P  • 

(n (e /P ) - 2  log(l/5))) 2. This also upper bounds the running time required for vertex elimina­

tions, as S i n g l e V e r t e x E l im  (Algorithm 10) can be implemented to run in time 0(d \ogd), 

where d is the combinatorial degree of the vertex being eliminated. W ith probability 1—0(5), 

this also upper bounds the running time required for performing the random vertex selec­

tions of low degree vertices, which can be implemented using a simple rejection sampling 

approach. □

D efin ition  5.1.14. Given an Eulerian Laplacian L, a robustly bounded Schur complement 

set vertex set J , is a subset of the vertices o /L , s.t. for any J  C J  and any L where

U 1 1 / 2 (l - l ) u 11/2 < 1/ 2,

we have Ugc[£]~ ■ <  0 (1 )U l.

L em m a 5.1.15. Given an Eulerian Laplacian L, for any fixed constant a, an a-RCDD  

subset J  of the vertices of L is robustly bounded.

Proof. This is immediate from Corollary 5.1.8 and Lemma 5.1.11.

Our goal is to prove Theorem 5.0.2. Firstly we want to show

□

Pr u j y 2 (l"™'*) -  l )  u j y 2 2 > e < 0(6) (5.7)

where L is the input to S i n g l e P h a s e  and L^fcmax̂ is the output. Secondly, we also need to 

prove the required bounds on the running time. We set up a matrix martingale to help us 

prove the theorem. Consider the inner loops (inside k, inside the t loops) of S i n g l e P h a s e . 

We can define the change in each step to be:

def g (k,t)   ^(k,t—1)

2. Here we assume that the edge count does not grow by more than a constant factor during a single
vertex elimination. This is only false if e < n -1 2̂, when our ne~8 — n4 running time is slower than doing
exact Gaussian elimination, which can then be used instead in this regime.

82



www.manaraa.com

Since Lemma 5.1.4 implies each has zero expectation, we can define a zero-mean

martingale sequence

P if fc < fc 
k t if k — k  ̂ ___M(M) = E E xA‘')= E x(M)-

fc= 1 t = 1 (k,t)<(k,t)

Here we overload the <  and < notation to handle pair of variables in the lexicographical 

sense. The final step of this martingale is

M̂ k m a x i  P ) ,

Note that it is not the case that in general

L (k) +

because the martingale does not include the changes introduced by calls to 

SparsifyEulerian.

To track the changes caused by SparsifyEulerian, we need to further define changes 

from the sparsification steps: We define Z^0) =f — S, and for k > 0, we let

£ ( fc) 4 |f g(fc) _  g (k,P)

Now, we are able to express the output m atrix as

l w  =  l + m ^ p ) +  ; £ z m

fc= 0

We also define the following intermediate matrices:

fc—l
l (M) =  l  +  M (m) +  ^ 2

k=0

Next, we define stopped martingale variables.

D efin ition  5.1.16. We define the event of the martingale being safe until for

83



www.manaraa.com

t G { 1 ,. . . ,  P  +  1}

SAFE

to mean that both of the following conditions hold:

1. All calls to SparsifyEulerian strictly before the kth elimination have been successful,

i.e. the approximation errors at each step are small:

^ S(fc,P) s ^-p) < e Vk < k.
2

2. For all indices (k ,t) strictly preceding (k , t ), i.e. (fc, t) < (k , t ), we had

< e /2 .

Note tha t in addition to the events S A F E ^ ’1) , . . . ,  S A F E ^  ,p\  we also consider event 

S A F E ^ ’P+1). Index (k ,P  +  1) does not correspond to a step of the martingale, but the 

condition tha t the martingale has small norm for strictly preceding indices is still well- 

defined. This notation will later help us prove statements by induction on the ordered 

indices (fc, 1) <  (fc, 2) <  . . .  <  (fc, P) <  (fc, P  +  1) <  (fc +  1,1) <  —

We then define a truncated Martingale as one where the steps incur no additional error 

once it fails. Its variance steps is given by:

. I if S A F E ^
X  =  \ (5.8)

0 otherwise.

—(fc t)The following sequence of sums of X  is another zero mean martingale:

M (fc,U =  ^  X lMj.

(fc,i)<(fc,i)

Ultimately, we want to bound the ' probability of the event that

n / 2 (L (fcmax) _  l ^ u ^ 1 //2 >  e occurs. Later, we will prove the following lemma.

84



www.manaraa.com

L em m a 5.1.17. I f  S A F E ^  holds,

then we have for all (k ,t)  < (k , t ),

U 11/2 u 1 1 / 2 < e, and

and we have for all k < k

U S(() ;< O (1) • Uj,. (5.10)

From this lemma, we see that if we can prove Pr[-iSAFE^n+1,1 ]̂ <  0(6), it will imply 

Equation (5.7).

Note that >  e/ 2  implies > e/2. Hence, when

upper bounding the probability of P rf-iS A F E ^ ’̂ ], we can instead consider the higher prob­

ability event

VA; <  k. j j t l / 2  i 7 ( A ) T T t l / 2  
U S (fc,p)Zi s ( ^ p ) <  e ')  A (v(k,t) < (k ,P ). u fL1/2M M u l 1/2 < e/ 2

The matrix Martingale inequality that we use the rectangular matrix Martingale from Cor 

1.3. of [Trollb],

L em m a 5.1.18 (Matrix Freedman). Let R /1) . . .  be a sequence of matrices, and use

E j_ i [r ^

to denote the expectation of R ^) conditioned on R ^ _1\  H ^~ 2\  . . . ,  R^1) such that for any i

Ei [ r 00] =  0

and ||R W | | 2  < p over its entire support. Then for any error t we have:

~  '   ~Pr 3k > 0  s.t. > t AND
j<k 2 j<k

< n • exp
- r

100 (cr2 +  tp)

85



www.manaraa.com

As we are always normalizing by U l , we can define rescaled versions of the martingale, 

as well as variances:

jy[(M) 4|f u t ^ M ^ u ! 1/ 2L L

k,t) u t 1 / 2 X^fc’̂ U ^ 2L L

Together with a union bound, this allows us to bound Pr[-iSAFE^n+1,1 ]̂ by:

P r h S A F E ^ 1’1)]

^ E pd

+  Pr 3 (k , t) s.t. > s AND

(5.11)

<

+  Pr 3 (k, t) s.t. X E<(M) > a 2
_ (k,t)<(k,t) 2

2

(5.12)

(5.13)

Each call to S p a r s if y E u l e r ia n  is made with error probability parameter S /P  and by 

Lemma 5.1.13, we call the routine at most 0 (P )  times, so by a union bound and Theo­

rem 5.0.1, the probability at some call fails is at most 0(6), which bounds the term (5.11). 

The other two conditions rely on truncated Martingales, which rely on the condition

s a f e ^ ) .

Lemma 5.1.17 allows us to bound the error of

L em m a 5.1.19. We have

x ( fc’0 < 0 ( 1 / P )

over the entire support of'XSk,t  ̂ unconditionally.

Proof. Note that if S A F E ^ ’̂  no longer holds, the truncation process sets ~X(k,t) 

Otherwise, since by Lemma 5.1.17 we have

=  0 .

^localW U s(fc- 1) ^  O (1 ) • U l ,



www.manaraa.com

we then get

k , t ) u [ 1 / 2 X (M)u t 1 / 2 < 0 (1)
j j t l / 2  v ( f c , t ) x r t l / 2  

local u  local

Here the last condition follows from the rescaling factor of 1 /P , and the bounds on the 

error of the single vertex elimination algorithm given by Lemma 5.1.6 Part 3. □

Lemma 5.1.19 says that the steps of have norm bounded by O (1 /P ) • This means

tha t Lemma 5.1.18 gives that for a 2 — and s = e2, using P  =  0 (e - 2  log2 (l/£ ))

and log( 1 / <5) > fl(logn), the probability (5.12) is upper bounded by

nexp
- r

1 0 0  (cr2 +  tp)
<  0 (8). (5.14)

Lem m a 5.1.20.

Pr

\
LU Cc e-+

-

X  E <(M)
j^(k,i)^(k,t)T  j^(k,i)T^{k,i) > a 2

_ (k,t)<(k,t) 2

< 0(5).

Proof.

Pr 3 (k, t) s.t.

< Pr

X
(k,t)<(k,t)

+ P r

3 (k ,t) s.t. 

3(A), t) s.t.

E  E <(t.i) [ x (W)Tx (W
(k,t)<(k,t)

E  E «iU) [ x (W)* (W )f
(k,t)<(k,t)

>  £T2/2

>  cr2/2

(5.15)

(5.16)

We will bound each of these two terms by 0(8), giving the desired result. Since the proofs 

for bounding each of the two terms are essentially identical, we will only handle the first of 

the two terms.

When S A F E ^  does not hold =  0. When S A F E ^  holds, by Lemma 5.1.17,

87



www.manaraa.com

and so we can show that

x ( M ) T u t^x (fc,t)T ^  0 ( l ) X (k’t)Tu Jocal(k)X (k’t)T

so that

x (M)Tx (fc,t) _  u t 1/ 2x ( fc,t)TI j t x ( fc,t) u t i / 2 L L L

T j t 1 / 2 ! ! 1 / 2 T j t 1/ 2 v ( f c , i ) T T j t  X ( M ) t  j t 1/ 2 T J 1/ 2 T j t l / 2
U local U local*  U ZomZW^ U local ^  local U L

±  ^ u t 1 / 2 u laca, u l 1/2

This bound holds unconditionally, so clearly we also have

E < ( k , t ) i (y)Txtw ] x ^ l lu [1/2u,ocaiut1/2.

Summing for a fixed k over the P  samples made in one round of elimination, we get

EE <(k,t) 'x(*.‘>Tx(M)j r< ^ l u L 1/2U ,ocalU fL1/2.

. This gives 0 E Wfc— Wfc-i.We define W 0 =  0 and W* =  E i < k E t E<fo) [x & ‘>TX<M)‘

Starting from Lemma 5.1.19, direct algebraic manipulations then imply that if S A F E ^ ’̂  

holds, we have

X (M)TX (M) < o  (1 /P 2) ,

and when SAFE**’** does not hold, we get this bound trivially from =  0. A triangle

inequality then gives

HWfc -  W fc_i|| < 0 ( P / P 2) =  0 (1 /P )  (5.17)

and if we let E<fc [•] denote expectation of over the random choice of vertex to eliminate, 

conditional on all the random choices of the algorithm until the kth  elimination, then by 

Equation (5.6),

88



www.manaraa.com

Summing over all k < k : and using k < n /2  gives

E  E<fc [W* -  W n ]  d  0  ( i )  n. (5.18)
k<k

We now construct a zero mean martingale which we will use to bound the proba-
defbility in term (5.15), by an application of Theorem 3.1.3. Let =  W — W ^_i — 

E<fc [Wk — Wfc_i] =  Wfc — E<fc [Wfc]. Vfc is zero-mean conditional on the random choices 

up to step k and so R & =  ]CjLi X? ls a zero-mean martingale.

k
= E W1 -  Wj-i -  E (W3- -  W ^x]

3= 1
k

=  W t - X ; E [ W ; - W i _1]
1=1 3

Let H/j, =  terminology of Theorem 3.1.3, R& is a zero-mean martin­

gale corresponding to Ŵ, while is the associated difference sequence, and is the 

predictable quadratic variation process of R*,.

Note that unconditionally

Hfc = E f  Vi = E f- (wj — W,*-! — E [Wj — Wj-i]) E f ( Wi - Wi->)2
i < k <3 i < k < 3 ^  3 >  j < k <3

d E f. (wi - wi-i) IIwi - wi-i II ̂  ̂ r n - (5-19)
3<k 3

Let uj2 =  -pz, for some absolute constant C  chosen s.t. by Equation (5.19), we have

89



www.manaraa.com

Pr[3i : Amax(H i) > ur\ = 0. Now, by Equation (5.18) we get

Pr[3fc : Amax(W k) > cr2] =  Pr

< Pr 

=  Pr

k
3k : Amax +  ^ 2  E iW J ~  W i- l ]  >  a

3= l

3k i Amax (R&) ]> cr

<3

2 0 (1 )
P

3k i Amax(I^A:) ^  & ^ 5  and Amax(H/c) <  uj

We now want to apply Theorem 3.1.3, to bound the probability above, with R^ as the 

zero-mean martingale, Vj is the associated difference sequence, and H* as the predictable 

quadratic variation process. By Equation (5.17)

IV, w *  -  W fc_! — E [Wfc — W fe-J
<k

< max ||Wfc — W fc-rll, 

0 (1)

E [W* -  W fc_!]
<k

.(since both terms are PSD)

<
P  ’

which gives us a value for the norm control parameter R. Thus by Theorem 3.1.3, and using 

<72- =  e(logj,1/J)), log(l/ 5) > Q(logn), and u j 2 =  we get for an appropriate choice of

constants that

P r 3i \ Amax(Ri) ^  <j and Amax(Hj) u j < nexp

< 8.

This completes the bound on the probability term (5.15), and similarly, we can show the 

term (5.16) is bounded by 5. □

Proof of Theorem 5.0.2. The running time guarantees we need were established in 

Lemma 5.1.13. Based on Lemma 5.1.17, we observed earlier that Pr[-iSAFE^n+1,1 ]̂ <  0(<5) 

implies Equation (5.7). Our bounds on each of the terms (5.11), (5.12) (see Equation (5.14)) 

and (5.13) (see Lemma 5.1.20)) establish this, hence proving the theorem.

90



www.manaraa.com

□

Finally, we prove Lemma 5.1.17, which we used above to prove Theorem 5.0.2.

Proof of Lemma 5.1.17. We consider an ordering (k, 1) <  (k,2) < . . .  <  (k ,P ) <  (k ,P  + 

1) < (k) < (k +  1,1) < . . .  and so on. We prove by induction on this ordering, that the two 

claims of Lemma 5.1.17 hold for index (k ,t). From

L(M) -  L = M(m) + Y  Z&
k<k

and using a triangle inequality we get

U 1 1 / 2 (l^  -  l) u 11/2 < u[1/2M(M)Uj[y2 + Y  llu^^Z^U^ 2
k<k

Our actual induction hypothesis for index (k ,t)  is that Equation (5.10) hold for tha t index, 

and a slightly strengthened version of Equation (5.9) namely that S A F E ^ ’̂  implies

E
k<k

|u ^ 1 / 2 Z(^ u [ 1 / 2
if calls to S p arsifyE u ler ian  stricly before (k, t)

2 < Ce----------------------------------p ---------------------------------- I5'20)

for some constant C  s.t. the guarantee of Lemma 5.1.13 that the number of calls to 

SparsifyEulerian is O(P) ensures Ce #  calIs to Spâ P?yTulerian <  ej2. This in turn gives 

Equation (5.9), from a triangle inequality combined with Part 2 of Definition 5.1.16.

As our base case, we consider the index (1,1). We call SparsifyEulerian(L, 5/P, e') 

to compute and SAFE^1,1) guarantees this call succeeded. So Theorem 5.0.1 imme­

diately tells us that u[1/2z(°)u[1/2 < e' <  establishing Equation (5.20) for this

index. This in turn gives Equation (5.9), from a triangle inequality combined with Part 2 

of Definition 5.1.16:
v n / 2  ^L (0) _  u j l / 2 < e.

From Lemma 5.1.15, we then immediately get Equation (5.10). Next, we consider prov­

ing the inductive statements when SAFE^fc,i+1') holds, assuming the induction hypoth­

esis holds for S A F E ^ .  In this case, the condition in Equation (5.10) remains un­

91



www.manaraa.com

changed, so it follows immediately from the induction hypothesis for S A F E 'fc-̂  - The sum

E k<k u j y 2 z (* )u { y 2 and upper bound we want for it also remain unchanged, so again

we get Equation (5.20). This gives Equation (5.9), from a triangle inequality combined with 

Part 2  of Definition 5.1.16, i.e. for (k ,t) < (k ,t + 1) we have

< e.

Now we consider proving the inductive statements when S AFE^fe+1,1̂  holds, assuming the in­

duction hypothesis holds for From the induction hypothesis for S A F E ^ ’̂ "1"1̂ ,

we have tha t

U ti / 2  ^L (fc,P) _  x jti / 2 < e.

From Lemma 5.1.15, we then get U S(k,p) d  0 (  1) • U l .  This ensures that if a call to 

S p a r s if y E u l e r ia n  was made at the end of kth  elimination, then since S A F E ^ +1,t) guar­

antees the call succeeded, we have

u[1/2z(°)u[1/2 < 0 (1) ■yt1 / 2 2 (0 )U ^ 1 //2  
( k , P ) ^  u s ( k , P ) 2  <  o d y  < %

This then proves Equation (5.20) for S A F E ^ +1,1\  which gives Equation (5.9) from a triangle 

inequality combined with Part 2  of Definition 5.1.16. Finally, by Lemma 5.1.15, we then get 

U S (fc) - <  O  (1) • U l ,  which proves Equation (5.10) for SAFE^fc+1,1̂ .

□

92



www.manaraa.com

Appendix A

A .l  Schur C om plem ents and P seudo-inverses

Consider a general PSD matrix of the form

M
( a  ^

\B V
o ''  

\ °  T/

 ̂A  0^

\B V
where A  is invertible and I is the identity matrix on a subset of the indices of M. 

Based on Fact 2.1.1 for vectors orthogonal to the null space of M  we have

x t M + x  =  x T

- T

V

R+ 0 

0 T+

- 1

X

vB  V
Recall the general formula for blockwise inversion:

(A.l)

U  cA- 1

VB  D /

I A - 1 +  A ^'C (D  -  B A -1 C )-1 B A -1 - A “ 1C(D -  B A _1C) ■A
i —(D — B A -1 C )-1B A -1 (D — B A “1C )-1 ,

By applying the formula for blockwise inversion and simplifying, we get

/  . _ !  AA 0

vB  V
A " 1 0

- B A 1 I

93



www.manaraa.com

So

( „\T/
X t M + £c =  a?T

A " 1 0

- B A ” 1 I

R+ 0 

0 T+ - B A " 1 I
x.

Suppose x  =

W
, and again x  is orthogonal to the null space of M . Then

cct M + cc =

T

W

=  VTT+y.

A - 1 0

B A " 1 I

T
R + 0 

0 T+

A _i 0 

B A 1 I

\ / 0\

W

(A.2)

From the above we can conclude the following fact.

F ac t A .1.1 (Schur Complements and Pseudo-Inverses). Suppose U is an undirected Lapla- 

cian. Let S =  Sc[U]^. Then n s (Ut)CjCn s -  Sc[U]c-

A .2 D eferred Proofs from C hapter 5

We first show the overall error accumulation from Lemma 5.0.3. The proof relies on the 

following lemma about the accumulation of errors.

Proof of Lemma 5.0.3. Lemma 5.0.2 gives

V n/ \  ( L ^  -  L (̂ +l)>) U n/ . \  sop) V ) s'*p) < 0p€,

for any 0 <  p < pmax- By Lemma B.2 of [CKP+ 16b], we have for every p

2x ( l M  _  l(* '+1)) y <  $ve ( f \ J s{ir)x +  f \ 3 s{ir)y ) .

So summing over these gives

2x ( l ^  -  y < e (xTF x + yTFy) .

94



www.manaraa.com

Again by Lemma B . 2  [CKP+ 16b], this gives

p t l / 2  ^ L ( i )  _  L ( 0 ) ^  F t  1 / 2  <  e

□

A .2 .1  P r o o f  o f  L em m a 5 .0 .4

In order to prove Lemma 5.0.4, we define a new matrix F, which is made up of the various 

Schur complements of the final matrix L^n) onto the corresponding intermediate spaces. Let 

I  = \ ip . . .  n} be the set of vertices remaining after first p  phases. Let

E  ■ UscfLM] (A.3)

where J2p &p = 1  and ^  V ^bm ax) =  l / 0 (logn).

Rewriting F  as differences between consecutive steps shows tha t it is in fact close to F.

L em m a A .2.1. With high probability, the matrices F  and F  as defined in Equations 5.2 

and A.3 respectively satisfy:

where p max =  O(logn) is the number of invocations of S in g l e P h a se  (Algorithm 1) by 

E u l e r ia n L U  (Algorithm 8).

Proof. The key observation is that because the Schur complement steps after step ip are 

completely contained among the vertices {ip, . . .  n}, the difference between F  and F  can be 

bounded using the discrepancies at the steps.

Formally, the choice of pivots means we have

P  ~ 0 (pmax) P ’

95



www.manaraa.com

which when substituted into the formula for F  gives:

F= E ^ U S(, P ) +  E E $P (UL(v) “  U l ( v + o )  '
Ô p-̂ Pmax Ô JxCPmax P 'HP

Collecting the terms related to F, and reversing the summation on the p's turns this into:

By triangle inequality we then get:

Since = 1 > the above is at most epmax provided the maximum error over any consecutive 

sequences of phases is e, which happens WHP by Lemma 5.0.3. Since the e argument to 

E u l e r ia n L U  (Algorithm 8) is required to be < 1, the desired result follows. □

L em m a A .2.2. Let L be a (possibly asymmetric) matrix, Io =  V, . . . ,  /Pmax- i  be nested 

subsets of indices, i.e., Iq C / p + 1  C . . . C / Pmax_i and Co, c i , . . . ,  Cp be constants. Then

F  E L TF fL,

where L L^n .̂

Proof of Lemma A .2.2. Let M  be any matrix with M  +  M T E 0 and define

By Equation 2 . 1  and Theorem 2 . 2  in [Mat92] we have Cm E U m  and Cg^M], =  Sc[Cm ]j • 

Together with the identity Sc[P]j E P  when P  E 0, these imply

UscfMb -  CsctMjj ^  C m - (A.4)

96



www.manaraa.com

It suffices to show tha t for any p we have U g ^ j  ^  L TF tL , which is equivalent to

U s 4 l L  -  Sc
LTF tL =  L;TF fL ) t [ / 1t r VjXt

Inverting both sides then reduces it to U g ^ j  h ^L’*’F L ’*‘t  ̂ [Ip] . Using the definition of F

gives

(p F L *  T) [ / p] =  £  L tT) [ / P]
0 < p '  <Pm ax V  / p /  /

Now we consider the terms separately and show that ^L^U sc[l] ^  — ^sc[£] 0̂r

every p which will imply the lemma. There are two cases.

p < p '

By Equation A.4, we have

( L t u s 4 £]v L tT)  [Ip] =< [/,] d  [/,].

As the support of ^sc^l] *s a ŝo resbricted. onto Ip, we can replace and h^T with 

their restrictions onto Ip. Using [Ip] = Sc , we have

L tC Sc(Ll £ tT I [Jp] = S C Sc u l  r~. Sc 
ip Sc[l L

T
Sc

tT

=  u
SC[£L ‘

(A.5)

(A.6 )

p' < p  :

As Ip C Jp/, we can write this operator as

L tu sc[L]v L tT )  W  =  ( Y L tu sc[£]v L tT )  [ V ] )  [Ip]

Once again, the restriction to Ip> in both the middle and the outer terms means



www.manaraa.com

Plugging this back in, and applying the identity about Schur complements of subsets 

of vertices gives:

(£tus<fflv EtT) WJ =  ( C SC [L ]V ) f [/,] =  C£ [/p] =  (c sc(£] J  ■

Now, from Cm h  Um  we have ^ C g ^  ^ ■< .

□

We can now conclude things formally.

Proof of Lemma 5.0.4■ By Lemma A.2 .2 , F  ^  (L^n^)T F ^ L ^ . By Lemma A.2.1, we have 

w.h.p. tha t F  ~o(log(n)) F. Thus, we have

l/0 ( lo g 2 n) F  ^

□

A .3  Lem m as ab out F inding R C D D  Sets

We now give some lemmas which we use to prove Theorem 5.1.1, which says tha t we can 

quickly find a-RCDD sets in a directed graph.

L em m a A .3.1. Let L G Rnxn be an Eulerian Laplacian and let F  Q V  be a random subset 

of size k. Then the expected number of i G F  such that Y ljeF j^ i l^ijl >  l^al^nl  a  ̂ most 

k 2{ 1  +  a )/n .

Proof. We have tha t for all j

n \ i * r \ i * n -  n  ( ' “ ) ■  n
ie[k-1} v 7  ie[k-i] v 7

and therefore Pr \j G jF | i G F] =  Since =  we have that

98



www.manaraa.com

E =  Lji and that by Markov’s inequality

Pr
Lyl “  l +  a

L a \i E F < k -  1 

n — 1
(l +  a)

and since

Pr [* i  F] = TT ( 1 i : ) =  TT n /  . =
V n  +  1  —  i J -*■ n  +  1  —  z

i£[k]

n — k
n

1  -  -

n

we have tha t Pr[i E  F] = ^  and the expected number i  E  F  such tha t Y ljeF j^ i l-^ul — T + a  

is at most

E Pr
ie\n\

l  +  a
= J 2 F l ii EF] Pr

i£[n]

- * ( £ = 9 ( i + a )

^  — -i | I * ^ Fz— l +  aj£F,jy^i

Since k < n  we have (k — l ) / ( n  — 1) <  k /n  and the result follows. □

L em m a A .3.2. Let L E  Enxn be an Eulerian Laplacian, let F  C V  be a random subset 

of size k and let F f C V  be the elements i E  F  for which Y ljeF j^ i l-̂ b'l — I + a l^ l an  ̂

E je F j^ i  1 ^ + 1  — I+al^nl ^ en probability at least 1/2 we have

|F '| >  k 1 -

4 k
( 1  +  a)n_

and therefore for k = g p ^ j ,  Lpip1 is a-RCDD with \Ff\ > 16̂ +a) with probability at least 

1/ 2 .

Proof. Applying Lemma A.3.1 to L and L T we see that the expected number of elements 

i E  F  for which YhjeFj^i l-^ul — i + a l ^ l  *s a  ̂ mos  ̂ k2(l + a ) /n  and the expected number 

of elements i E  F  for which YhjeFj^i 1-^*71 — l + a  1-^*1 is most &;2(l +  a ) / n  consequently an 

expected 2k2{l +  a ) / n  are removed from F  to get F ' . Consequently, by Markov’s inequality 

with probability at least 1/2 at most 2k2 (1 +  a ) / n  are removed from F  to get F ' □

99



www.manaraa.com

A .4 M atrix  Facts

L em m a A .4.1. Let L , L , F  be arbitrary matrices with ker(L) =  ker(LT) =  ker(L) =  

ker(LT) =  ker(F) =  ker(FT). Suppose ||F +/ 2(L — L )F +/2|| < e and that 7 F ^  LTF +L.

Then LTF+L j \  LTF+L.

Proof. We have

|F + /2 ( L - L ) F +/2|| < e

II(L — L)x ||f + < e • ||x ||F

||Lx||f + -  ||Lx||f+ < e /y fy -  ||Lx||p+
_ _ . . . 2

rcTLTF +La: — ;etL tF +L:e < O I -4= +  — ) • £TLTF +L:r
y/7 7

Vx

\/x

Vrr,

which is one definition of the desired condition. □

100



www.manaraa.com

Bibliography

[ADK+16]

[AGM+10]

[Ald90]

[BGH+06]

[BHV08]

[BP12]

Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and 

Richard Peng. On fully dynamic graph sparsifiers. CoRR, abs/1604.02094,

2016. Available at: http://arxiv.org/abs/1604.02094.

Arash Asadpour, Michel X. Goemans, Aleksander M^dry, Shayan Oveis Gha- 

ran, and Amin Saberi. An o(log n /  log log n)-approximation algorithm for 

the asymmetric traveling salesman problem. In Proceedings of the Twenty-first 

Annual ACM -SIAM  Symposium on Discrete Algorithms, SODA ’10, pages 379- 

389, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathe­

matics.

David Aldous. The random walk construction of uniform spanning trees and 

uniform labelled trees. In SIAM  Journal on Discrete Mathematics, pages 450- 

465, 1990.

Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan 

Toledo. Support-graph preconditioners. SIAM  Journal on Matrix Analysis and 

Applications, 27(4):930-951, 2006.

Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving elliptic 

finite element systems in near-linear time with support preconditioners. SIAM  

J. Numerical Analysis, 46(6):3264-3284, 2008.

Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods 

for discrete distributions. In Automata, Languages, and Programming, pages 

133-144. Springer, 2 0 1 2 .

101

http://arxiv.org/abs/1604.02094


www.manaraa.com

[Bro89]

[Cal99]

[CDN89]

[CKK+17]

[CKM+11]

[CKM+14a]

[CKM+14b]

[CKP+16a]

Andrei Broder. Generating random spanning trees. In Proceedings of the 30th 

annual Symposium on Foundations of Computer Science, FOCS 1989, pages 

442-447, 1989.

Ronald Calinger. A Contextual History of Mathematics. Prentice Hall, 1999.

Charles J Colbourn, Robert P J Day, and Louis D Nel. Unranking and ranking 

spanning trees of a graph., Journal of Algorithms, 10(2):271-286, 1989.

Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard 

Peng, Anup Rao, and Aaron Sidford. Solving directed laplacian systems in 

nearly-linear time through sparse lu factorizations. Manuscript, 2017.

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, 

and Shang-Hua Teng. Electrical flows, laplacian systems, and faster approx­

imation of maximum flow in undirected graphs. In Proceedings of the fSrd  

annual ACM  symposium on Theory of computing, STOC ’1 1 , pages 273-282, 

New York, NY, USA, 2011. ACM.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard 

Peng, Anup B. Rao, and Shen Chen Xu. Solving sdd linear systems in nearly 

m log l/2 n time. In Proceedings of the 46th Annual ACM  Symposium on Theory 

of Computing, STOC ’14, pages 343-352, New York, NY, USA, 2014. ACM.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard 

Peng, Anup B. Rao, and Shen Chen Xu. Solving sdd linear systems in nearly 

m log l/2 n time. In Proceedings of the 46th Annual ACM  Symposium on Theory 

of Computing, STOC ’14, pages 343-352, New York, NY, USA, 2014. ACM.

Michael B. Cohen, Jon Kelner, John Peebles, Rirhcard Peng, Aaron Sidford, 

and Adrian Vladu. Faster algorithms for computing the stationary distribution, 

simulating random walks, and more. In 2016 IEEE 57th Annual Symposium 

on Foundations of Computer Science (FOCS), pages 583-592, Oct 2016.

102



www.manaraa.com

[CKP+16b]

[Cla03]

[CLM+15]

[CMN96]

[CMSV17]

[DKP+16]

[DS08a]

Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup Rao, 

Aaron Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov 

chains and new spectral primitives for directed graphs. Accepted to STOC

2017. Preprint available at h ttp s : / /a rx iv .o rg /a b s /1 6 1 1 .0 0 7 5 5 ., 2016.

Kenneth L. Clarkson. Solution of linear systems using randomized rounding, 

2003.

Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard 

Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In 

Proceedings of the 2015 Conference on Innovations in Theoretical Computer 

Science, ITCS ’15, pages 181-190, New York, NY, USA, 2015. ACM.

Charles J Colbourn, Wendy J Myrvold, and Eugene Neufeld. Two algorithms 

for unranking arborescences. Journal of Algorithms, 20(2):268-281, 1996.

Michael B. Cohen, Aleksander M^dry, Piotr Sankowski, and Adrian Vladu. 

Negative-weight shortest paths and unit capacity minimum cost flow in 

O (m l0/7 log w) time: (extended abstract). In Proceedings of the Twenty- 

Eighth Annual ACM -SIAM  Symposium on Discrete Algorithms, SODA ’17, 

pages 752-771, Philadelphia, PA, USA, 2017. Society for Industrial and Ap­

plied Mathematics.

David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant 

Sachdeva. Sampling random spanning trees faster than matrix multiplication. 

Accepted to STOC 2017. Preprint available at h t tp : / /a rx iv .o rg /a b s /1 6 1 1 . 

07451., 2016.

Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized 

flow via interior point algorithms. In Proceedings of the Fortieth Annual ACM  

Symposium on Theory of Computing, STOC ’08, pages 451-460, New York, 

NY, USA, 2008. ACM.

103

https://arxiv.org/abs/1611.00755
http://arxiv.org/abs/1611


www.manaraa.com

[DS08b]

[Fre75]

[Gre96]

[GRV09]

[GSS1 1 ]

[Gua97]

[Gue83]

[Gus78]

[Hig02]

[HX16]

Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized 

flow via interior point algorithms. In STOC ’08, STOC ’08, pages 451-460, 

2008.

David A. Freedman. On tail probabilities for martingales. Ann. Probab., 

3(1): 100—118, 02 1975.

Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Di­

agonally Dominant Linear Systems. PhD thesis, Carnegie Mellon University, 

Pittsburgh, October 1996. CMU CS Tech Report CMU-CS-96-123.

Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random 

spanning trees. In Proceedings of the Twentieth Annual ACM -SIAM  Symposium  

on Discrete Algorithms, SODA ’09, pages 576-585, Philadelphia, PA, USA, 

2009. Society for Industrial and Applied Mathematics.

Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding 

approach to the traveling salesman problem. In Proceedings of the 2011 IEEE  

52Nd Annual Symposium on Foundations of Computer Science, FOCS ’11, 

pages 550-559, Washington, DC, USA, 2011. IEEE Computer Society.

Stephen Guattery. Graph embedding techniques for bounding condition num­

bers of incomplete factor preconditioning. Technical report, ICASE, 1997.

Alain Guenoche. Random spanning tree. Journal of Algorithms, 4(3):214-220, 

1983.

Ivar Gustafsson. A class of first order factorization methods. B IT  Numerical 

Mathematics, 18(2):142-156, 1978.

Nicholas J Higham. Accuracy and stability of numerical algorithms. Siam, 2002.

Nicholas J. A. Harvey and Keyulu Xu. Generating random spanning trees via 

fast matrix multiplication. In LA TIN  2016: Theoretical Informatics, volume 

9644, pages 522-535, 2016.

104



www.manaraa.com

[Kir47]

[KL0S14]

[KLP+16]

[KM09a]

[KM09b]

[KM11]

[KMP10]

Gustav Kirchhoff. C/ber die auflosung der gliechungen, auf welche man bei 

der untersuchung der linearen vertheilung galvanischer strome gefuhrt wird. In 

Poggendorgs Ann. Phys. Chem., pages 497-508, 1847.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An 

almost-linear-time algorithm for approximate max flow in undirected graphs, 

and its multicommodity generalizations. In Proceedings of the Twenty-Fifth A n­

nual ACM -SIAM  Symposium on Discrete Algorithms, SODA 2014, Portland, 

Oregon, USA, January 5-7, 2014, pages 217-226, 2014.

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A 

Spielman. Sparsified cholesky and multigrid solvers for connection lapla- 

cians. In Proceedings of the 4Sth Annual ACM  SIG ACT Symposium 

on Theory of Computing, pages 842-850. ACM, 2016. Available at 

h ttp ://arxiv.org/abs/1512.01892.

Jonathan Kelner and Aleksander Madry. Faster generation of random span­

ning trees. In Proceedings of the 50th annual Symposium on Founda­

tions o f Computer Science, FOCS 2009, pages 13-21, 2009. Available at 

https: /  /  arxiv.org/abs /0908.1448.

Jonathan A. Kelner and Aleksander Madry. Faster generation of random span­

ning trees. In FOCS ’09, pages 13-21, Washington, DC, USA, 2009. IEEE 

Computer Society.

Jonathan Kelner and Petar Maymounkov. Electric routing and concurrent flow 

cutting. Theor. Comput. Sci., 412(32):4123-4135, July 2011.

I. Koutis, G.L. Miller, and R. Peng. Approaching optimality for solving SDD 

linear systems. In Foundations of Computer Science (FOCS), 2010 51st Annual 

IEEE Symposium on, pages 235 -244, 2010.

105

http://arxiv.org/abs/1512.01892


www.manaraa.com

[KMP11]

[KMP12]

[K0SZ13]

[KR93]

[KS16]

[Kul90] 

[LPS15] 

[LSI 3]

[LS14]

I. Koutis, G.L. Miller, and R. Peng. A nearly-m log n time solver for SDD linear 

systems. In Foundations of Computer Science (FOCS), 2011 52nd Annual 

IEEE Symposium on, pages 590-598, 2011.

Jonathan A. Kelner, Gary L. Miller, and Richard Peng. Faster approximate 

multicommodity flow using quadratically coupled flows. In Proceedings of the 

44th symposium on Theory of Computing, STOC ’1 2 , pages 1-18, New York, 

NY, USA, 2012. ACM.

Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. 

A simple, combinatorial algorithm for solving sdd systems in nearly-linear time. 

In Proceedings of the 45th annual ACM  symposium on Symposium on theory 

of computing, pages 911-920. ACM, 2013.

Douglas J Klein and Milan Randic. Resistance distance. Journal of Mathemat­

ical Chemistry, 12(l):81-95, 1993.

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for 

laplacians - fast, sparse, and simple. In Proceedings of the 57th annual Sym­

posium on Foundations of Computer Science, FOCS 2016, 2016. Available at 

https://arxiv.org/pdf/1605.02353vl.pdf.

Vidyadhar G. Kulkarni. Generating random combinatorial objects. Journal of 

Algorithms, 1 1  (2 ): 185-207, 1990.

Yin Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified cholesky solvers 

for SDD linear systems. CoRR, abs/1506.08204, 2015.

Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent meth­

ods and faster algorithms for solving linear systems. In Foundations of Com­

puter Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 147-156. 

IEEE, 2013.

Yin Tat Lee and Aaron Sidford. Path  finding methods for linear program­

ming: Solving linear programs in OVrank iterations and faster algorithms

106

https://arxiv.org/pdf/1605.02353vl.pdf


www.manaraa.com

[MadlO]

[Mad 13]

[M adl6 ]

[Mat92]

[MST15a]

[MST15b]

for maximum flow. In Foundations of Computer Science (FOCS), 2014 

IEEE 55th Annual Symposium on, pages 424-433. IEEE, 2014. Available at 

http://arxiv.org/abs/1312.6677 and http://arxiv.org/abs/1312.6713.

Aleksander Madry. Fast approximation algorithms for cut-based problems in 

undirected graphs. In 51th Annual IEEE Symposium on Foundations of Com­

puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, 

pages 245-254, 2010.

Aleksander Madry. Navigating central path with electrical flows: From flows 

to matchings, and back. In 54th Annual IEEE Symposium on Foundations 

of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, 

pages 253-262, 2013.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. 

In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 

2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, 

pages 593-602, 2016.

Roy Mathias. Matrices with positive-definite hermitian part: Inequalities and 

linear systems. SIAM  journal on matrix analysis and applications, 13(2) :640- 

654, 1992.

Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast gener­

ation of random spanning trees and the effective resistance metric. In 

Proceedings of the Twenty-Sixth Annual ACM -SIAM  Symposium on Dis­

crete Algorithms, SODA 2015, pages 2019-2036, 2015. Available at 

http://arxiv.org/pdf/1501.00267vl.pdf.

Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation 

of random spanning trees and the effective resistance metric. In Proceedings 

of the Twenty-Sixth Annual ACM -SIAM  Symposium on Discrete Algorithms, 

pages 2019-2036. Society for Industrial and Applied Mathematics, 2015.

107

http://arxiv.org/abs/1312.6677
http://arxiv.org/abs/1312.6713
http://arxiv.org/pdf/1501.00267vl.pdf


www.manaraa.com

[0SV12]

[PS14]

[She09]

[Shel3]

[SSI la] 

[SSllb]

[SSllc]

[ST04a]

Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating 

the exponential, the lanczos method and an O(m)-time spectral algorithm for 

balanced separator. In STO C  ’12, pages 1141-1160, New York, NY, USA, 2012. 

ACM.

Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD 

linear systems. In Proceedings of the 46th Annual ACM  Symposium on Theory 

of Computing, STOC ’14, pages 333-342, New York, NY, USA, 2014. ACM. 

Available at http://arxiv.org/abs/1311.3286.

Jonah Sherman. Breaking the multicommodity flow barrier for O (\/log n)- 

approximations to sparsest cut. In FOCS 2009, 2009.

Jonah Sherman. Nearly maximum flows in nearly linear time. In Proceedings 

of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Sci­

ence, FOCS ’13, pages 263-269, Washington, DC, USA, 2013. IEEE Computer 

Society.

D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. 

SIAM  Journal on Computing, 40(6): 1913—1926, 2011.

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective 

resistances. SIAM  Journal on Computing, 40(6): 1913-1926, 2011. Available at 

http: /  /  arxiv.org/ abs /0803.0929.

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective 

resistances. SIAM  Journal on Computing, 40(6):1913-1926, 2011. Announced 

at STOC’08.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for 

graph partitioning, graph sparsification, and solving linear systems. In Pro­

ceedings of the Thirty-sixth Annual ACM  Symposium on Theory of Computing, 

STOC ’04, pages 81-90, New York, NY, USA, 2004. ACM.

108

http://arxiv.org/abs/1311.3286


www.manaraa.com

[ST04b]

[ST 14a]

[ST14b]

[Str69]

[Str8 6 ]

[TBI97]

[TenlO]

[Troll a] 

[Trollb] 

[Wal77]

Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for 

graph partitioning, graph sparsification, and solving linear systems. In Pro­

ceedings of the thirty-sixth annual ACM  symposium on Theory of computing, 

pages 81-90. ACM, 2004.

Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for pre­

conditioning and solving symmetric, diagonally dominant linear systems. SIAM  

Journal on Matrix Analysis and Applications, 35(3):835—885, 2014. Available 

at http://arxiv.org/abs/cs/0607105.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for 

preconditioning and solving symmetric, diagonally dominant linear systems. 

SIAM. J. Matrix Anal. & Appl, 35:835aA§885, 2014.

Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354- 

356, August 1969.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 

1986.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. 

Siam, 1997.

Shang-Hua Teng. The Laplacian Paradigm: Emerging Algorithms for Massive 

Graphs. In Theory and Applications of Models of Computation, pages 2-14, 

2010 .

Joel Tropp. Freedman’s inequality for matrix martingales. Electron. Commun. 

Probab., 16:no. 25, 262-270, 2011.

Joel A Tropp. Freedman’s inequality for matrix martingales. arXiv preprint 

arXiv:1101.3039, 2011. Available at: https://arxiv.org/abs/1101.3039.

Alastair J. Walker. An efficient method for generating discrete random variables 

with general distributions. ACM  Trans. Math. Softw., 3(3):253-256, September 

1977.

109

http://arxiv.org/abs/cs/0607105
https://arxiv.org/abs/1101.3039


www.manaraa.com

[Wil96]

[Will2]

[ZBL+04]

[ZGL03]

[ZS04]

David Bruce Wilson. Generating random spanning trees more quickly than the 

cover time. In Proceedings of the Twenty-eighth Annual ACM  Symposium on 

Theory of Computing, STOC ’96, pages 296-303, New York, NY, USA, 1996. 

ACM.

Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith- 

Winograd. In Proceedings of the Forty-Fourth Annual ACM  Sympo­

sium on Theory of computing, pages 887-898. ACM, 2 0 1 2 . Available at: 

http://theory.stanford.edu/~virgi/m atrixm ult-f.pdf.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lai, Jason Weston, and 

Bernhard Scholkopf. Learning with local and global consistency. Advances in 

neural information processing systems, 16(16):321-328, 2004.

X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using 

gaussian fields and harmonic functions. ICML , 2003.

Dengyong Zhou and Bernhard Scholkopf. A regularization framework for learn­

ing from graph data. In ICML workshop on statistical relational learning and 

Its connections to other fields, volume 15, pages 67-68, 2004.

110

http://theory.stanford.edu/~virgi/matrixmult-f.pdf

